設(shè)雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的右焦點為F(c,0),方程ax2+bx-c=0的兩個實根分別為x1和x2,則點P(x1,x2)與圓x2+y2=2的位置關(guān)系為______.
由韋達(dá)定理可知:x1+x2=-
b
a
,x1x2=-
c
a
,∴
x21
+
x22
=
b2
a2
+
2c
a
=
b2+2ac
a2
>2
,
∴點P(x1,x2)在圓x2+y2=2外,
故答案為點P(x1,x2)在圓x2+y2=2外
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的漸近線方程為y=±2x,則其離心率為(  )
A.5B.
5
2
C.
3
D.
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若雙曲線
x2
16
-
y2
m
=1
的焦距為10,則雙曲線的漸近線方程為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

當(dāng)m∈[-2,-1]時,二次曲線
x2
4
+
y2
m
=1
的離心率e的取值范圍是( 。
A.[
2
2
,
3
2
]
B.[
3
2
,
5
2
]
C.[
5
2
,
6
2
]
D.[
3
2
6
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列命題中,真命題個數(shù)為(  )
①直線2x+y-1=0的一個方向向量為
a
=(1,-2)

②直線x+y-1=0平分圓x2+y2-2y=1;
③曲線
x2
m+1
+
y2
6-m
=1
表示橢圓的充要條件為-1<m<6;
④如果雙曲線
x2
4
-
y2
2
=1
上一點P到雙曲線右焦點距離為2,則點P到y(tǒng)軸的距離是
2
6
3
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知雙曲線
x2
n
+
y2
12-n
=-1
(n>0)的離心率是
3
,則n=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)F1、F2是雙曲線
x2
16
-
y2
20
=1
的左右焦點,點P在雙曲線上,若點P到左焦點F1的距離等于9,則點P到右準(zhǔn)線的距離(  )
A.
2
3
B.
34
3
C.
2
3
34
3
D.
51
2
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

雙曲線C:x2-y2=2右支上的弦AB過右焦點F.
(1)求弦AB的中點M的軌跡方程
(2)是否存在以AB為直徑的圓過原點O?若存在,求出直線AB的斜率K的值.若不存在,則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)集合A={(x,y)|x2-
y2
36
=1},B={(x,y)|y=3x}
,則A∩B的子集的個數(shù)是( 。
A.2B.4C.6D.8

查看答案和解析>>

同步練習(xí)冊答案