(2012•成都一模)已知定義在R上的奇函數(shù)f(x)滿足f(x-4)=-f(x),且x∈[0,2]時(shí),f(x)=log2(x+1),則下列說法正確的是( 。
分析:取x=1,得f(3)=-f(-3)=1;f(x-4)=f(-x),則f(x-2)=f(-x-2),利用函數(shù)f(x)關(guān)于直線x=-2對稱,可得函數(shù)f(x)在[-6,-2]上是減函數(shù);若m∈(0,1),則關(guān)于x的方程f(x)-m=0中兩根的和為-6×2=-12,另兩根的和為2×2=4,反之不一定成立.故可得結(jié)論.
解答:解:取x=1,得f(1-4)=-f(1)=-log2(1+1)=-1,所以f(3)=-f(-3)=1,故A正確;
奇函數(shù)f(x),x∈[0,2]時(shí),f(x)=log2(x+1),
∴x∈[-2,2]時(shí),函數(shù)為單調(diào)增函數(shù),
∵函數(shù)f(x)關(guān)于直線x=-2對稱,
∴函數(shù)f(x)在[-6,-2]上是減函數(shù),故B不正確;
定義在R上的奇函數(shù)f(x)滿足f(x-4)=-f(x),
則f(x-4)=f(-x),
∴f(x-2)=f(-x-2),
∴函數(shù)f(x)關(guān)于直線x=-2對稱,故C不正確;
若m∈(0,1),則關(guān)于x的方程f(x)-m=0在[-8,8]上有4個(gè)根,
其中兩根的和為-6×2=-12,另兩根的和為2×2=4,所以所有根之和為-8.
反之,不一定成立,故D不正確.
故選A.
點(diǎn)評:本題考查函數(shù)的性質(zhì),考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•成都一模)已知函數(shù)f(x)=x2-2mx+2-m
(1)若不等式f(x)≥-mx+2在R上恒成立,求實(shí)數(shù)m的取值范圍
(2)設(shè)函數(shù)f(x)在[0,1]上的最小值為g(m),求g(m)的解析式及g(m)=1時(shí)實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•成都一模)若函數(shù)f(x)滿足:在定義域D內(nèi)存在實(shí)數(shù)x0,使得f(x0+1)=f(x0)+f(1)成立,則稱函數(shù)f(x)為“1的飽和函數(shù)”.有下列函數(shù):
①f(x)=
1x
;②f(x)=2x
;
③f(x)=lg(x2+2);
④f(x)=cosπx,
其中你認(rèn)為是“1的飽和函數(shù)”的所有函數(shù)的序號為
②④
②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•成都一模)設(shè)正方體ABC-A1B1C1D1 的棱長為2,動(dòng)點(diǎn)E,F(xiàn)在棱A1B1上,動(dòng)點(diǎn)P、Q分別在棱AD、CD上,若EF=1,A1E=x,DQ=y,DP=z(x,y,z>0),則下列結(jié)論中錯(cuò)誤的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•成都一模)已知函數(shù)f(x)=
3
inωxcosωx+1-sin2ωx
的周期為2π,其中ω>0.
(I)求ω的值及函數(shù)f(x)的單調(diào)遞增區(qū)間;
(II)在△ABC中,設(shè)內(nèi)角A、B、C所對邊的長分別為a、b,c若a=
3
,c=2,f(A)=
3
2
,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•成都一模)設(shè)集合S={1,2,3,4,5,6},定義集合對(A,B):A⊆S,B⊆S,A中含有3個(gè)元素,B中至少含有2個(gè)元素,且B中最小的元素不小于A中最大的元素.記滿足A∪B=S的集合對(A,B)的總個(gè)數(shù)為m,滿足A∩B≠∅的集合對(A,B)的總個(gè)數(shù)為n,則
m
n
的值為(  )

查看答案和解析>>

同步練習(xí)冊答案