已知命題“2≤x<4”是命題“3m-1≤x≤-m”的必要非充分條件,則m的范圍是
 
考點(diǎn):必要條件、充分條件與充要條件的判斷
專(zhuān)題:簡(jiǎn)易邏輯
分析:根據(jù)不等式之間的關(guān)系,利用充分必要條件的定義即可得到結(jié)論.
解答: 解:命題“2≤x<4”是命題“3m-1≤x≤-m”的必要非充分條件
3m-1<2
-m≥4
3m-1≤-m
,
解得-4≤m≤
1
4

故m的范圍是[-4,
1
4
],
故答案為:[-4,
1
4
],
點(diǎn)評(píng):本題主要考查充分條件和必要條件的應(yīng)用,利用不等式之間的關(guān)系即可得到結(jié)論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)g(x)=log2x,關(guān)于方程|g(x)|2+m|g(x)|+2m+3=0在(0,2)內(nèi)有三個(gè)不同實(shí)數(shù)解則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解不等式:
1
C
3
n
-
1
C
4
n
2
C
5
n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x),x∈N,y∈N+滿足:①對(duì)任意x1,x2∈N+且x1≠x2,都有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1)②對(duì)任意n∈N+都有f(f(n))=3n
(1)試證明函數(shù)f(x)為N+上的單調(diào)增函數(shù),
(2)求f(8)+f(18)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某企業(yè)的資金每一年都比上一年分紅后的資金增加一倍,并且每年年底固定給股東們分紅500萬(wàn)元.該企業(yè)2008年年底分紅后的資金為1000萬(wàn)元,
(1)求該企業(yè)2012年年底分紅后的資金;
(2)求該企業(yè)到哪一年年底分紅后的資金超過(guò)32500萬(wàn)元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,若c2=a2+b2+ab,則△ABC是( 。
A、等邊三角形
B、銳角三角形
C、直角三角形
D、鈍角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知奇函數(shù)f(x)的定義域?yàn)镽,當(dāng)x≥0,f(x)=(
1
2
x-1.
(1)求函數(shù)f(x)的解析式,并判斷函數(shù)在R上的單調(diào)性(不需證明,只需給出結(jié)論);
(2)對(duì)于函數(shù)f(x)是否存在實(shí)數(shù)m,使f(2m-mcosθ)+f(-1-sin2θ)<f(0)對(duì)所有θ∈[0,
π
2
]都成立?若存在,求出符合條件的所有實(shí)數(shù)m的范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知條件 p:x2-(a+3)x+3a<0,q:x2-7x+10<0,且p是q的充分不必要條件,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求f(x)=(
1
4
)x
-(
1
2
)x-1
+2,x∈[-1,2]的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案