某種燈泡使用壽命在1000小時(shí)以上的概率為0.2,某同學(xué)家一共用了這種燈泡4只.設(shè)這4只燈泡在使用1000小時(shí)后,壞了的燈泡數(shù)為隨機(jī)變量X.
(1)求隨機(jī)變量X的概率分布;    
(2)求隨機(jī)變量X的數(shù)學(xué)期望和方差.
考點(diǎn):離散型隨機(jī)變量及其分布列,離散型隨機(jī)變量的期望與方差
專題:概率與統(tǒng)計(jì)
分析:(1)隨機(jī)變量X的取值為0,1,2,3,4,由題意知P(X=k)=
C
k
4
•0.8k•0.24-k
,其中k=0,1,2,3,4.由此能求出隨機(jī)變量X的分布列.
(2)由(1)能求出隨機(jī)時(shí)變量X的數(shù)學(xué)期望和隨機(jī)變量X的方差.
解答: 解:(1)隨機(jī)變量X的取值為0,1,2,3,4,
在使用1000小時(shí)后,燈泡壞了的概率p=1-0.2=0.8,
P(X=k)=
C
k
4
•0.8k•0.24-k
,其中k=0,1,2,3,4.
∴隨機(jī)變量X的分布列為:
 X  0
 P 0.0016   0.0256  0.1536  0.4096  0.4096
(2)由(1)知:
隨機(jī)時(shí)變量X的數(shù)學(xué)期望為:
E(X)=0.0256+2×0.1536+3×0.4096+4×0.4096=3.2.
隨機(jī)變量X的方差為:
V(x)=(0-3.2)2×0.0016+(1-3.2)2×0.0256+(2-3.2)2×0.1536
+(3-3.2)2×0.4096+(4-3.2)2×0.4096=0.64.
點(diǎn)評(píng):本題考查離散型隨機(jī)變量的分布列的求法,考查隨機(jī)變量的數(shù)學(xué)期望和方差的求法,是中檔題,在歷年高考中都是必考題型之一.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)的零點(diǎn)與g(x)=lnx+2x-8的零點(diǎn)之差的絕對(duì)值不超過0.5,則f(x)可以是(  )
A、f(x)=3x-6
B、f(x)=(x-4)2
C、f(x)=ex-1-1
D、f(x)=ln(x-
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
,
b
滿足|
a
|=2,|
b
|=1,且
a
b
的夾角為
π
3

(1)若向量
a
+k
b
a
-k
b
相互垂直,求實(shí)數(shù)k的值;
(2)是否存在實(shí)數(shù)λ,使向量2λ
a
+7
b
與向量
a
b
的夾角為鈍角?若存在,求出實(shí)數(shù)λ的取值范圍,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

馬航MH370失蹤牽動(dòng)全球人的眼光,某衛(wèi)星發(fā)現(xiàn)海上A處北偏東45°方向,距離A點(diǎn)100(
3
-1)海里的B處有一疑是漂浮物,在A處北偏西75°方向,距離A點(diǎn)200海里的C處我方“海巡1號(hào)”奉命以10
3
海里/小時(shí)的速度去捕撈此漂浮物,而漂浮物順洋流正以10海里/小時(shí)的速度,以B處向北偏東30°方向漂流.問海巡1號(hào)沿什么方向行駛才能最快到達(dá)疑是漂浮物出,并求出所需時(shí)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在空間四邊形ABCD中,E,F(xiàn)分別是AB和CB上的點(diǎn),G,F(xiàn)分別是
CD和AD上的點(diǎn),且
AE
EB
+
CF
FB
=1,
AH
HD
=
CG
GD
=2,求證:EH,BD,F(xiàn)G三條直線相交于同一點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=
2-x
2+x
+
2x-2
的定義域?yàn)镸,
(Ⅰ)求M;
(Ⅱ)當(dāng)x∈M時(shí),求函數(shù)f(x)=2log22x+alog2x的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}前三項(xiàng)的和為-3,前三項(xiàng)的積為8.
(1)求等差數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{an}單調(diào)遞增,求數(shù)列{an}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x3+x2+ax,討論f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)a≥2時(shí),求證:
a+1
-
a
a-1
-
a-2

查看答案和解析>>

同步練習(xí)冊(cè)答案