【題目】已知f(x)=x2﹣a|x﹣1|+b(a>0,b>﹣1)
(1)若b=0,a>2,求f(x)在區(qū)間[0,2]內(nèi)的最小值m(a);
(2)若f(x)在區(qū)間[0,2]內(nèi)不同的零點(diǎn)恰有兩個,且落在區(qū)間[0,1),(1,2]內(nèi)各一個,求a﹣b的取值范圍.
【答案】
(1)解:b=0,a>2時,f(x)=x2﹣a|x﹣1|,
當(dāng)0≤x≤1時,f(x)=x2+ax﹣a,且在[0,1]遞增,
可得f(0)取得最小值﹣a;
當(dāng)1<x≤2時,f(x)=x2﹣ax+a, >1,
當(dāng)a>4時, >2,在(1,2]遞減,可得最小值f(2)=4﹣a;
當(dāng)2<a≤4時,1< ≤2,可得f( )取得最小值,且為a﹣ .
由﹣a<4﹣a,a﹣ ﹣(﹣a)= >0(2<a≤4),
即有a﹣ >﹣a.
綜上可得,m(a)=﹣a;
(2)解:由f(x)= ,
當(dāng)0≤x<1時,f(x)遞增,可得f(0)f(1)≤0,
即為(b﹣a)(1+b)≤0①
當(dāng)1<x≤2時,f(x)有一個零點(diǎn),可得f(1)f(2)≤0或f( )=0(2<a≤4),
即為(1+b)(4﹣a+b)≤0或b= ﹣a②
由 或 或a﹣b= (2<a≤4),
可得a﹣b≤0或a﹣b≥4或3<a﹣b≤4,
綜上可得a﹣b的范圍是(﹣∞,0]∪(3,+∞)
【解析】(1)討論當(dāng)0≤x≤1時,當(dāng)1<x≤2時,同時對a討論,可得f(x)的單調(diào)性,可得最小值;(2)將f(x)寫成分段函數(shù)式,討論當(dāng)0≤x<1時,當(dāng)1<x≤2時,由函數(shù)的零點(diǎn)存在定理,可得不等式組,解不等式即可得到所求范圍.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解二次函數(shù)的性質(zhì)的相關(guān)知識,掌握當(dāng)時,拋物線開口向上,函數(shù)在上遞減,在上遞增;當(dāng)時,拋物線開口向下,函數(shù)在上遞增,在上遞減.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生的課外閱讀時間情況,某學(xué)校隨機(jī)抽取了50人進(jìn)行統(tǒng)計分析,把這50人每天閱讀的時間(單位:分鐘)繪制成頻數(shù)分布表,如下表所示:
閱讀時間 | [0,20) | [20,40) | [40,60) | [60,80) | [80,100) | [100,120] |
人數(shù) | 8 | 10 | 12 | 11 | 7 | 2 |
若把每天閱讀時間在60分鐘以上(含60分鐘)的同學(xué)稱為“閱讀達(dá)人”,根據(jù)統(tǒng)計結(jié)果中男女生閱讀達(dá)人的數(shù)據(jù),制作出如圖所示的等高條形圖.
(1)根據(jù)抽樣結(jié)果估計該校學(xué)生的每天平均閱讀時間(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作為代表);
(2)根據(jù)已知條件完成下面的2×2列聯(lián)表,并判斷是否有99%的把握認(rèn)為“閱讀達(dá)人”跟性別有關(guān)?
男生 | 女生 | 總計 | |
閱讀達(dá)人 | |||
非閱讀達(dá)人 | |||
總計 |
附:參考公式,其中n=a+b+c+d.
臨界值表:
P(K2≥k) | 0.100 | 0.050 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中, 為等邊三角形,且平面平面, , , .
(Ⅰ)證明: ;
(Ⅱ)若棱錐的體積為,求該四棱錐的側(cè)面積.
【答案】(Ⅰ)證明見解析;(Ⅱ) .
【解析】【試題分析】(I) 取的中點(diǎn)為,連接,.利用等腰三角形的性質(zhì)和矩形的性質(zhì)可證得,由此證得平面,故,故.(II) 可知是棱錐的高,利用體積公式求得,利用勾股定理和等腰三角形的性質(zhì)求得的值,進(jìn)而求得面積.
【試題解析】
證明:(Ⅰ)取的中點(diǎn)為,連接,,
∵為等邊三角形,∴.
底面中,可得四邊形為矩形,∴,
∵,∴平面,
∵平面,∴.
又,所以.
(Ⅱ)由面面,,
∴平面,所以為棱錐的高,
由,知,
,
∴.
由(Ⅰ)知,,∴.
.
由,可知平面,∴,
因此.
在中,,
取的中點(diǎn),連結(jié),則,,
∴ .
所以棱錐的側(cè)面積為.
【題型】解答題
【結(jié)束】
20
【題目】已知圓經(jīng)過橢圓: 的兩個焦點(diǎn)和兩個頂點(diǎn),點(diǎn), , 是橢圓上的兩點(diǎn),它們在軸兩側(cè),且的平分線在軸上, .
(Ⅰ)求橢圓的方程;
(Ⅱ)證明:直線過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)A1 , A2 , A3 , …,An是集合{1,2,3,…,n}的n個非空子集(n≥2),定義aij= ,其中i,j=1,2,…,n,這樣得到的n2個數(shù)之和記為S(A1 , A2 , A3 , …,An),簡記為S,下列三種說法:①S與n的奇偶性相同;②S是n的倍數(shù);③S的最小值為n,最大值為n2 . 其中正確的判斷是( )
A.①②
B.①③
C.②③
D.③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直四棱柱ABCD﹣A1B1C1D1底面是邊長為1的正方形,高AA1= ,點(diǎn)A是平面α內(nèi)的一個定點(diǎn),AA1與α所成角為 ,點(diǎn)C1在平面α內(nèi)的射影為P,當(dāng)四棱柱ABCD﹣A1B1C1D1按要求運(yùn)動時(允許四棱柱上的點(diǎn)在平面α的同側(cè)或異側(cè)),點(diǎn)P所經(jīng)過的區(qū)域的面積= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:(x﹣1)2+y2=r2(r>0)與直線l:y=x+3,且直線l有唯一的一個點(diǎn)P,使得過P點(diǎn)作圓C的兩條切線互相垂直,則r=;設(shè)EF是直線l上的一條線段,若對于圓C上的任意一點(diǎn)Q,∠EQF≥ ,則|EF|的最小值= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,其中女性有55名.如圖是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖.將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”,已知“體育迷”中有10名女性.
(1)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否認(rèn)為“體育迷”與性別有關(guān)?
(2)將日均收看該體育節(jié)目不低于50分鐘的觀眾稱為“超級體育迷”,已知“超級體育迷”中有2名女性,若從“超級體育迷”中任意選取2人,求至少有1名女性觀眾的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的定義域,值域是;定義域,值域是,其中實(shí)數(shù)滿足.
甲:如果任意,存在,使得,那么;
乙:如果存在,存在,使得,那么;
丙:如果任意,任意,使得,那么;
。喝绻嬖,任意,使得,那么;
請判斷上述四個命題中,假命題的個數(shù)是( )
A.0B.1C.2D.3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com