如圖,在四棱錐P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2,∠PAB=60°.
(Ⅰ)證明AD⊥平面PAB;
(Ⅱ)求異面直線PC與AD所成的角的大;
(Ⅲ)求二面角P-BD-A的大。
【答案】分析:(I)由題意在△PAD中,利用所給的線段長(zhǎng)度計(jì)算出AD⊥PA,在利用矩形ABCD及線面垂直的判定定理及、此問(wèn)得證;
(II)利用條件借助圖形,利用異面直線所稱角的定義找到共面得兩相交線,并在三角形中解出即可;
(III)由題中的條件及三垂線定理找到二面角的平面角,然后再在三角形中解出角的大小即可.
解答:解:(Ⅰ)證明:在△PAD中,由題設(shè)PA=2,PD=2
可得PA2+AD2=PD2于是AD⊥PA.
在矩形ABCD中,AD⊥AB.又PA∩AB=A,
所以AD⊥平面PAB.

(Ⅱ)解:由題設(shè),BC∥AD,
所以∠PCB(或其補(bǔ)角)是異面直線PC與AD所成的角.
在△PAB中,由余弦定理得
PB=
由(Ⅰ)知AD⊥平面PAB,PB?平面PAB,
所以AD⊥PB,因而B(niǎo)C⊥PB,于是△PBC是直角三角形,故tanPCB=
所以異面直線PC與AD所成的角的大小為arctan

(Ⅲ)解:過(guò)點(diǎn)P做PH⊥AB于H,過(guò)點(diǎn)H做HE⊥BD于E,連接PE
因?yàn)锳D⊥平面PAB,PH?平面PAB,所以AD⊥PH.又AD∩AB=A,
因而PH⊥平面ABCD,故HE為PE再平面ABCD內(nèi)的射影.
由三垂線定理可知,BD⊥PE,從而∠PEH是二面角P-BD-A的平面角.
由題設(shè)可得,
PH=PA•sin60°=,AH=PA•cos60°=1,
BH=AB-AH=2,BD=,
HE=
于是再RT△PHE中,tanPEH=
所以二面角P-BD-A的大小為arctan
點(diǎn)評(píng):本小題主要考查直線和平面垂直,異面直線所成的角、二面角等基礎(chǔ)知識(shí),考查空間想象能力,運(yùn)算能力和推理論證能力,還考查了利用反三角函數(shù)的知識(shí)求出角的大。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)證明AD⊥PB;
(2)求二面角P-BD-A的正切值大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD為正方形,AB=4,PA=3,點(diǎn)A在PD上的射影為點(diǎn)G,點(diǎn)E在AB上,平面PEC⊥平面PDC.
(1)求證:AG∥平面PEC;
(2)求AE的長(zhǎng);
(3)求二面角E-PC-A的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求證:平面PBD⊥平面PAC.
(Ⅱ)求四棱錐P-ABCD的體積V.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,底面是邊長(zhǎng)為a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E為PB中點(diǎn)
(1)求證;平面ACE⊥面ABCD;
(2)求三棱錐P-EDC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•武漢模擬)如圖,在四棱錐P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案