【題目】在平面直角坐標(biāo)系xOy中,已知曲線C1的參數(shù)方程為 (φ為參數(shù)).以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=4 cosθ.
(1)求C1與C2交點的直角坐標(biāo);
(2)已知曲線C3的參數(shù)方程為 (0≤α<π,t為參數(shù),且t≠0),C3與C1相交于點P,C2與C3相交于點Q,且|PQ|=8,求α的值.
【答案】
(1)解:曲線C1的參數(shù)方程為 (φ為參數(shù)),
消去參數(shù)可得:x2+(y﹣2)2=4.
曲線C2的極坐標(biāo)方程為ρ=4 cosθ,即ρ2=4 ρcosθ,
化為直角坐標(biāo)方程:x2+y2=4 x.
聯(lián)立 ,
解得 , ,
∴C1與C2交點的直角坐標(biāo)分別為:(0,0); .
(2)解:曲線C3的參數(shù)方程為 (0≤α<π,t為參數(shù),且t≠0),
時,可得 ,代入方程:x2+(y﹣2)2=4,解得t=0,t=4.
代入:x2+y2=4 x,解得t=0,不滿足|PQ|=8,舍去.
時,消去參數(shù)化為普通方程:y=xtanα,設(shè)k=tanα.
聯(lián)立 ,解得 , ,
可得P(0,0),或P .
聯(lián)立 ,解得 , ,
可得Q(0,0),或Q .
∵|PQ|=8,∴只能取P ,Q .
∴ + =82,
化為: =0,解得k=﹣
【解析】(1)曲線C1的參數(shù)方程為 (φ為參數(shù)),消去參數(shù)可得普通方程.曲線C2的極坐標(biāo)方程為ρ=4 cosθ,即ρ2=4 ρcosθ,利用互化公式可得直角坐標(biāo)方程,聯(lián)立解出即可得出.(2)曲線C3的參數(shù)方程為 (0≤α<π,t為參數(shù),且t≠0), 時,不滿足|PQ|=8,舍去. 時,消去參數(shù)化為普通方程:y=xtanα,設(shè)k=tanα,即直線l的方程為:y=kx,分別與曲線C1 , C2的方程聯(lián)立解出交點P,Q的坐標(biāo),利用兩點之間的距離公式即可得出.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校高二年級共有1600人,現(xiàn)統(tǒng)計他們某項任務(wù)完成時間介于30分鐘到90分鐘之間,圖中是統(tǒng)計結(jié)果的頻率分布直方圖.
(1)求平均值、眾數(shù)、中位數(shù);
(2)若學(xué)校規(guī)定完成時間在分鐘內(nèi)的成績?yōu)?/span>等;完成時間在分鐘內(nèi)的成績?yōu)?/span>等;完成時間在分鐘內(nèi)的成績?yōu)?/span>等,按成績分層抽樣從全校學(xué)生中抽取10名學(xué)生,則成績?yōu)?/span>等的學(xué)生抽取人數(shù)為?
(3)在(2)條件下抽取的成績?yōu)?/span>等的學(xué)生中再隨機(jī)選取兩人,求兩人中至少有一人完成任務(wù)時間在分鐘的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是定義在R上的奇函數(shù),且f(2)=0,當(dāng)x>0時,有xf'(x)+f(x)<0恒成立,則不等式xf(x)>0的解集是( )
A.(﹣2,0)∪(2,+∞)
B.(﹣2,2)
C.(﹣∞,﹣2)∪(2,+∞)
D.(﹣2,0)∪(0,2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,圓C的參數(shù)方程為,(t為參數(shù)),在以原點O為極點,x軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線的極坐標(biāo)方程為,A,B兩點的極坐標(biāo)分別為.
(1)求圓C的普通方程和直線的直角坐標(biāo)方程;
(2)點P是圓C上任一點,求△PAB面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人的各科成績?nèi)缜o葉圖所示,則下列說法正確的是( )
A.甲的中位數(shù)是89,乙的中位數(shù)是98
B.甲的各科成績比乙各科成績穩(wěn)定
C.甲的眾數(shù)是89,乙的眾數(shù)是98
D.甲、乙二人的各科成績的平均分不相同
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了了解全校學(xué)生的上網(wǎng)情況,在全校采取隨機(jī)抽樣的方法抽取了名學(xué)生(其中男女生人數(shù)恰好各占一半)進(jìn)行問卷調(diào)查,并進(jìn)行了統(tǒng)計,按男女分為兩組,再將每組學(xué)生的月上網(wǎng)次數(shù)分為組: ,得到如圖所示的頻率分布直方圖:
(1)寫出的值;
(2)求抽取的名學(xué)生中月上網(wǎng)次數(shù)不少于次的學(xué)生的人數(shù);
(3)在抽取的名學(xué)生中,從月上網(wǎng)次數(shù)少于次的學(xué)生中隨機(jī)抽取人,求至少抽取到名男生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二項式( ﹣ )n展開式中的各項系數(shù)的絕對值之和為128.
(1)求展開式中系數(shù)最大的項;
(2)求展開式中所有的有理項.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中點.求證: (Ⅰ)PA∥平面BDE;
(Ⅱ)平面PAC⊥平面BDE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修44:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,點O(0,0), .
(1)求以為直徑的圓的直角坐標(biāo)方程;
(2)若直線的極坐標(biāo)方程為,判斷直線與圓的位置關(guān)系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com