集合M={x|logsinx|cosx|=0}中元素的個數(shù)為
 
考點:元素與集合關(guān)系的判斷
專題:函數(shù)的性質(zhì)及應(yīng)用,集合
分析:若logsinx|cosx|=0,則|cosx|=1,此時sinx=0不能做為底數(shù),故這樣的x不存在,進(jìn)而得到答案.
解答: 解:若logsinx|cosx|=0,
則|cosx|=1,此時sinx=0不能做為底數(shù),
故這樣的x不存在,
故集合M的元素有0個,
故答案為:0
點評:本題考查的知識點是元素與集合關(guān)系的判斷,其中熟練掌握對數(shù)的運算性質(zhì)是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
-sinx
+
16-x2
的定義域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=3,則f(x+3)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2-x
的定義域為M,g(x)=
x+2
的定義域為N,則M∩N=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={m|m=n2+2},A={y|y=x2-2x+2},則集合A與B之間的關(guān)系為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
4
+
y2
3
=1,M,N是坐標(biāo)平面內(nèi)的兩點,且M與C的焦點不重合.若M關(guān)于C的焦點的對稱點分別為A,B,線段MN的中點在C上,則|AN|+|BN|=( 。
A、4B、8C、12D、16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=x3(x2+1)是( 。
A、偶函數(shù)B、奇函數(shù)
C、既奇既偶D、非奇非偶

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程7x2-(k+3)x+k2-k-2=0有兩個實數(shù)根x1,x2,且0<x1<1<x2<2,則實數(shù)k的取值范圍是( 。
A、(-2,-1)
B、(3,4)
C、(-2,4)
D、(-2,-1)∪(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定點P(x0,y0)不在直線l:f(x,y)=0上,則f(x,y)-f(x0,y0)=0表示一條( 。
A、過點P且垂直于l的直線
B、過點P且平行于l的直線
C、不過點P但垂直于l的直線
D、不過點P但平行于l的直線

查看答案和解析>>

同步練習(xí)冊答案