已知.
(Ⅰ)求的最大值及取得最大值時x的值;
(Ⅱ)在△ABC中,角A,B,C的對邊分別為a,b,c,若,,,求△ABC的面積.
(Ⅰ),時,函數(shù)取得最大值2.(Ⅱ).
解析試題分析:(Ⅰ)將展開化一,化為的形式,然后利用正弦函數(shù)的最大值,即可求得函數(shù)取得最大值.(Ⅱ)由(Ⅰ)得,即,這是一個特殊值,可求得.因為,根據(jù)正弦定理,得.這樣得到一個關于的方程,再用余弦定理列一個關于的方程,解方程組,便可得的值,從而可求出△ABC的面積.
試題解析:(Ⅰ)
. 2分
當,即,時,函數(shù)取得最大值2. 4分
(Ⅱ)由,得,
∵,∴,解得. 6分
因為,根據(jù)正弦定理,得, 8分
由余弦定理,有,
則,
解得,, 10分
故△ABC的面積. 12分
考點:1、三角恒等變換;2、三角函數(shù)的最值;3、正弦定理與余弦定理.
科目:高中數(shù)學 來源: 題型:解答題
已知△ABC的三內(nèi)角A,B,C所對三邊分別為a,b,c,且.
(Ⅰ)求sinA的值;
(Ⅱ)若△ABC的面積S=12,b=6,求a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com