已知a、b、c分別是△ABC中角A、B、C的對邊,且a2+c2-b2=ac.
(Ⅰ)求角B的大;      (Ⅱ)若c=3a,求tanA的值.
【答案】分析:(Ⅰ)直接利用余弦定理即可得到結(jié)論;
(Ⅱ)先將c=3a代入a2+c2-b2=ac,得.利用余弦定理求出;再根基同角三角函數(shù)之間的關(guān)系求出其正弦即可求出結(jié)論.
解答:解:(Ⅰ)由余弦定理,得=(2分)
∵0<B<π,
.  (4分)
(Ⅱ):將c=3a代入a2+c2-b2=ac,得.          (6分)
由余弦定理,得.                        (8分)
∵0<A<π,
.  (10分)
. (12分)
點(diǎn)評:本題考查了解三角形的知識(shí),對余弦定理及其變式進(jìn)行重點(diǎn)考查,屬于中檔題目,只要細(xì)心分體已知條件式子的特點(diǎn)就不難解答這類問題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a、b、c分別是△ABC三個(gè)內(nèi)角A、B、C的對邊.
(1)若b2=ac,求角B的范圍.
(2)若acosA=bcosB,試判斷△ABC的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c分別是△ABC的三個(gè)內(nèi)角A,B,C所對的邊,若a=1,b=
3
,A+C=2B,則sinC=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a、b、c分別是△ABC的三個(gè)內(nèi)角A、B、C所對的邊,若
cosB
cosC
=-
b
2a+c
,則B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c分別是△ABC中角A,B,C的對邊,且sin2A+sin2C-sin2B=sinAsinC.
 (1)求角B的大;
 (2)若c=3a,求tanA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c分別是△ABC的三個(gè)內(nèi)角A,B,C的對邊,且滿足2asinB-
3
b=0.
(Ⅰ)求角A的大小;
(Ⅱ)當(dāng)A為銳角時(shí),求函數(shù)y=
3
sinB+sin(C-
π
6
)的最大值.

查看答案和解析>>

同步練習(xí)冊答案