某學(xué)生在上學(xué)路上要經(jīng)過4個(gè)路口,假設(shè)在各路口是否遇到紅燈是相互獨(dú)立的,遇到紅燈的概率都是,遇到紅燈時(shí)停留的時(shí)間都是2 分鐘. 設(shè)這名學(xué)生在路上遇到紅燈的個(gè)數(shù)為變量、停留的總時(shí)間為變量,

(1)求這名學(xué)生在上學(xué)路上到第三個(gè)路口時(shí)首次遇到紅燈的概率;

(2)這名學(xué)生在上學(xué)路上遇到紅燈的個(gè)數(shù)至多是2個(gè)的概率.

(3)求的標(biāo)準(zhǔn)差

 

【答案】

(1)

(2)

(3)

【解析】

試題分析:解(1)設(shè)這名學(xué)生在上學(xué)路上到第三個(gè)路口時(shí)首次遇到紅燈為事件A,因?yàn)槭录嗀等于事件“這名學(xué)生在第一和第二個(gè)路口沒有遇到紅燈,在第三個(gè)路口遇到紅燈”,所以事件A的概率為              4分

(2)設(shè)這名學(xué)生在上學(xué)路遇到紅燈的個(gè)數(shù)至多是2個(gè)為事件B,這名學(xué)生在上學(xué)路上遇到紅燈的個(gè)數(shù)~.

則由題意:

∴這名學(xué)生在上學(xué)路遇到紅燈的個(gè)數(shù)至多是2個(gè)的概率為.        10分

(3)~,∴,                12分

,∴,

                        14分

考點(diǎn):二項(xiàng)分布

點(diǎn)評(píng):主要是考查了獨(dú)立事件的概率以及二項(xiàng)分布的期望值和方差的求解運(yùn)用,屬于中檔題。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)生在上學(xué)路上要經(jīng)過4個(gè)路口,假設(shè)在各路口是否遇到紅燈是相互獨(dú)立的,遇到紅燈的概率都是
25
,遇到紅燈時(shí)停留的時(shí)間都是1 min.
求這名學(xué)生在上學(xué)路上因遇到紅燈停留的總時(shí)間至多是2 min的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)生在上學(xué)路上要經(jīng)過4個(gè)路口,假設(shè)在各路口是否遇到紅燈是相互獨(dú)立的,遇到紅燈的概率都是
13
,遇到紅燈停留的時(shí)間都是2min.
(1)求這名學(xué)生在上學(xué)路上到第三個(gè)路口時(shí)首次遇到紅燈的概率;
(2)求這名學(xué)生在上學(xué)路上因遇到紅燈停留的總時(shí)間至多是2min的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)生在上學(xué)路上要經(jīng)過4個(gè)路口,假設(shè)在各路口是否遇到紅燈是相互獨(dú)立的,遇到紅燈的概率都是
1
3
,遇到紅燈時(shí)停留的時(shí)間都是2min,則這名學(xué)生在上學(xué)路上因遇到紅燈停留的總時(shí)間恰好是4min的概率
8
27
8
27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)生在上學(xué)路上要經(jīng)過4個(gè)路口,假設(shè)在各路口是否遇到紅燈是相互獨(dú)立的,遇到紅燈的概率都是
2
5
,遇到紅燈時(shí)停留的時(shí)間都是1min,則這名學(xué)生在上學(xué)路上因遇到紅燈停留的總時(shí)間至多是3min的概率是
609
625
609
625

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)生在上學(xué)路上要經(jīng)過4個(gè)路口,假設(shè)在各路口是否遇到紅燈是相互獨(dú)立的,遇到紅燈的概率都是
13
,遇到紅燈時(shí)停留的時(shí)間都是2分鐘.
(1)求這名學(xué)生在上學(xué)路上到第三個(gè)路口時(shí)首次遇到紅燈的概率.
(2)這名學(xué)生在上學(xué)路上因遇到紅燈停留的總時(shí)間至多是4分鐘的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案