【題目】在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,已知(b﹣2a)cosC+ccosB=0
(1)求角C;
(2)若 ,求邊長(zhǎng)a,b的值.

【答案】
(1)解:∵(b﹣2a)cosC+ccosB=0,

∴由正弦定理可得:(sinB﹣2sinA)cosC+sinCcosB=0,

∴sinBcosC+cosBsinC=2sinAcosC,可得:sin(B+C)=sinA=2sinAcosC,

∵sinA≠0,

∴cosC=

∵C∈(0,π)

∴C=


(2)解:∵SABC= absinC= ab=

∴ab=4,①

由余弦定理可得:a2+b2﹣c2=2abcosC,

∵c=2,C= ,ab=4,

∴a2+b2=8,②

聯(lián)立①②即可解得:a=2,b=2


【解析】(1)由已知及正弦定理,兩角和的正弦函數(shù)公式,三角形內(nèi)角和定理可得sinA=2sinAcosC,由于sinA≠0,可求cosC= ,結(jié)合范圍C∈(0,π),可求C的值.(2)利用三角形面積公式可求ab=4,由余弦定理可得a2+b2=8,聯(lián)立即可解得a,b的值.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用正弦定理的定義和余弦定理的定義,掌握正弦定理:;余弦定理:;;即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,設(shè)點(diǎn)M(x0 , y0)是橢圓C: +y2=1上一點(diǎn),從原點(diǎn)O向圓M:(x﹣x02+(y﹣y02=r2作兩條切線分別與橢圓C交于點(diǎn)P,Q.直線OP,OQ的斜率分別記為k1 , k2
(1)若圓M與x軸相切于橢圓C的右焦點(diǎn),求圓M的方程;
(2)若r= ,①求證:k1k2=﹣ ;②求OPOQ的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為 (θ為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸的正半軸為極軸,建立極坐標(biāo)系.
(1)寫(xiě)出曲線C的極坐標(biāo)方程;
(2)設(shè)點(diǎn)M的極坐標(biāo)為( ),過(guò)點(diǎn)M的直線l與曲線C相交于A,B兩點(diǎn),若|MA|=2|MB|,求AB的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某職業(yè)學(xué)校的王亮同學(xué)到一家貿(mào)易公司實(shí)習(xí),恰逢該公司要通過(guò)海運(yùn)出口一批貨物,王亮同學(xué)隨公司負(fù)責(zé)人到保險(xiǎn)公司洽談貨物運(yùn)輸期間的投保事宜,保險(xiǎn)公司提供了繳納保險(xiǎn)費(fèi)的兩種方案:
①一次性繳納50萬(wàn)元,可享受9折優(yōu)惠;
②按照航行天數(shù)交納:第一天繳納0.5元,從第二天起每天交納的金額都是其前一天的2倍,共需交納20天.
請(qǐng)通過(guò)計(jì)算,幫助王亮同學(xué)判斷那種方案交納的保費(fèi)較低.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】考拉茲猜想又名3n+1猜想,是指對(duì)于每一個(gè)正整數(shù),如果它是奇數(shù),則對(duì)它乘3再加1;如果它是偶數(shù),則對(duì)它除以2.如此循環(huán),最終都能得到1.閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)程序,輸出的結(jié)果i=(
A.4
B.5
C.6
D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸,并在兩坐標(biāo)系中取相同的長(zhǎng)度單位,若直線l的極坐標(biāo)方程是ρsin(θ+ )=2 ,且點(diǎn)P是曲線C: (θ為參數(shù))上的一個(gè)動(dòng)點(diǎn).
(Ⅰ)將直線l的方程化為直角坐標(biāo)方程;
(Ⅱ)求點(diǎn)P到直線l的距離的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,用35個(gè)單位正方形拼成一個(gè)矩形,點(diǎn)P1、P2、P3、P4以及四個(gè)標(biāo)記為“▲”的點(diǎn)在正方形的頂點(diǎn)處,設(shè)集合Ω={P1 , P2 , P3 , P4},點(diǎn)P∈Ω,過(guò)P作直線lP , 使得不在lP上的“▲”的點(diǎn)分布在lP的兩側(cè).用D1(lP)和D2(lP)分別表示lP一側(cè)和另一側(cè)的“▲”的點(diǎn)到lP的距離之和.若過(guò)P的直線lP中有且只有一條滿足D1(lP)=D2(lP),則Ω中所有這樣的P為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐 中,已知 , , 底面 ,且 , 的中點(diǎn), 上,且 .

(1)求證:平面 平面 ;
(2)求證: 平面 ;
(3)求三棱錐 的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知MOD函數(shù)是一個(gè)求余函數(shù),記MOD(m,n)表示m除以n的余數(shù),例如MOD(8,3)=2.如圖是某個(gè)算法的程序框圖,若輸入m的值為48時(shí),則輸出i的值為(
A.7
B.8
C.9
D.10

查看答案和解析>>

同步練習(xí)冊(cè)答案