【題目】已知MOD函數(shù)是一個(gè)求余函數(shù),記MOD(m,n)表示m除以n的余數(shù),例如MOD(8,3)=2.如圖是某個(gè)算法的程序框圖,若輸入m的值為48時(shí),則輸出i的值為( )
A.7
B.8
C.9
D.10
【答案】C
【解析】解:模擬執(zhí)行程序框圖,可得:
n=2,i=0,m=48,
滿(mǎn)足條件n≤48,滿(mǎn)足條件MOD(48,2)=0,i=1,n=3,
滿(mǎn)足條件n≤48,滿(mǎn)足條件MOD(48,3)=0,i=2,n=4,
滿(mǎn)足條件n≤48,滿(mǎn)足條件MOD(48,4)=0,i=3,n=5,
滿(mǎn)足條件n≤48,不滿(mǎn)足條件MOD(48,5)=0,n=6,
…
∵ ∈N*,可得:2,3,4,6,8,12,16,24,48,
∴共要循環(huán)9次,故i=9.
故選:C.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解程序框圖(程序框圖又稱(chēng)流程圖,是一種用規(guī)定的圖形、指向線及文字說(shuō)明來(lái)準(zhǔn)確、直觀地表示算法的圖形;一個(gè)程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說(shuō)明).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,已知(b﹣2a)cosC+ccosB=0
(1)求角C;
(2)若 ,求邊長(zhǎng)a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(1)若曲線 在 處的切線方程為 ,求 的極值;
(2)若 ,是否存在 ,使 的極值大于零?若存在,求出 的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若曲線f(x)= (e﹣1<x<e2﹣1)和g(x)=﹣x3+x2(x<0)上分別存在點(diǎn)A、B,使得△OAB是以原點(diǎn)O為直角頂點(diǎn)的直角三角形,且斜邊AB的中點(diǎn)在y軸上,則實(shí)數(shù)a的取值范圍是( )
A.(e,e2)
B.(e, )
C.(1,e2)
D.[1,e)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=e2x , g(x)=kx+1(k∈R). (Ⅰ)若直線y=g(x)和函數(shù)y=f(x)的圖象相切,求k的值;
(Ⅱ)當(dāng)k>0時(shí),若存在正實(shí)數(shù)m,使對(duì)任意x∈(0,m),都有|f(x)﹣g(x)|>2x恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)訄AM恒過(guò)點(diǎn)(0,1),且與直線y=﹣1相切.
(1)求圓心M的軌跡方程;
(2)動(dòng)直線l過(guò)點(diǎn)P(0,﹣2),且與點(diǎn)M的軌跡交于A、B兩點(diǎn),點(diǎn)C與點(diǎn)B關(guān)于y軸對(duì)稱(chēng),求證:直線AC恒過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
①原命題為真,它的否命題為假;
②原命題為真,它的逆命題不一定為真;
③一個(gè)命題的逆命題為真,它的否命題一定為真;
④一個(gè)命題的逆否命題為真,它的否命題一定為真.
A. ①② B. ②③
C. ③④ D. ②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)函數(shù)f(x),如果存在x0≠0使得f(x0)=﹣f(﹣x0),則稱(chēng)(x0 , f(x0))與(﹣x0 , f(﹣x0))為函數(shù)圖象的一組奇對(duì)稱(chēng)點(diǎn).若f(x)=ex﹣a(e為自然數(shù)的底數(shù))存在奇對(duì)稱(chēng)點(diǎn),則實(shí)數(shù)a的取值范圍是( )
A.(﹣∞,1)
B.(1,+∞)
C.(e,+∞)
D.[1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在邊長(zhǎng)為4的正三角形ABC中,D,F(xiàn)分別為AB,AC的中點(diǎn),E為AD的中點(diǎn).將△BCD與△AEF分別沿CD,EF同側(cè)折起,使得二面角A﹣EF﹣D與二面角B﹣CD﹣E的大小都等于90°,得到如圖2所示的多面體.
(1)在多面體中,求證:A,B,D,E四點(diǎn)共同面;
(2)求多面體的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com