已知a>0,b<0,且a+b≠0,令a1=a,b1=b,且對(duì)任意的正整數(shù)k,當(dāng)ak+bk≥0時(shí),,;當(dāng)ak+bk<0時(shí),
(1)求數(shù)列{an+bn}的通項(xiàng)公式;
(2)若對(duì)任意的正整數(shù)n,an+bn<0恒成立,問是否存在a,b使得{bn}為等比數(shù)列?若存在,求出a,b滿足的條件;若不存在,說明理由;
(3)若對(duì)任意的正整數(shù)n,an+bn<0,且,求數(shù)列{bn}的通項(xiàng)公式.
【答案】分析:(1)通過計(jì)算轉(zhuǎn)化建立{bn+an}的相鄰兩項(xiàng)之間的關(guān)系是解決本題的關(guān)鍵,發(fā)現(xiàn)該數(shù)列是等比數(shù)列,從而確定出通項(xiàng)公式;
(2)假設(shè)存在合題意的a,b,然后確定出bn的關(guān)系式是解決本題的關(guān)鍵,通過分析其相鄰項(xiàng)之間的關(guān)系即可求解
(3)通過bn的相應(yīng)項(xiàng)之間的關(guān)系得到關(guān)于n的不等關(guān)系,然后結(jié)合已知an的遞推關(guān)系可求bn的表達(dá)式
解答:解:(1)當(dāng)ak+bk≥0時(shí),,;
∴ak+1+bk+1==
當(dāng)ak+bk<0時(shí),
∴ak+1+bk+1==
∴總有ak+1+bk+1=
∵a1=a,b1=b,
∴a1+b1=b+a
∴數(shù)列{an+bn}是以a+b為首項(xiàng),以為公比的等比數(shù)列
∴bn+an=(b+a)()n-1
(2)∵an+bn<0恒成立
∴(b+a)<0恒成立
∴b+a<0
∵當(dāng)ak+bk<0時(shí),,

不可能是個(gè)等比數(shù)列
故{bn}不是等比數(shù)列
(3)∵an+bn<0,,


=
=
∴bn=
點(diǎn)評(píng):本題考查數(shù)列的綜合問題,考查數(shù)列的遞推關(guān)系與通項(xiàng)公式之間的關(guān)系,考查學(xué)生探究性問題的解決方法,注意體現(xiàn)轉(zhuǎn)化與化歸思想的運(yùn)用,考查學(xué)生分析問題解決問題的能力和意識(shí).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,b>0,且ab=1,α=a+
4
a
,β=b+
4
b
,則α+β的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)在平面直角坐標(biāo)系xOy中,判斷曲線C:
x=2cosθ
y=sinθ
(θ為參數(shù))與直線l:
x=1+2t
y=1-t
(t為參數(shù))是否有公共點(diǎn),并證明你的結(jié)論.
(2)已知a>0,b>0,a+b=1,求證:
1
2a+1
+
4
2b+1
9
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•松江區(qū)二模)已知雙曲線C的中心在原點(diǎn),D(1,0)是它的一個(gè)頂點(diǎn),
d
=(1,
2
)
是它的一條漸近線的一個(gè)方向向量.
(1)求雙曲線C的方程;
(2)若過點(diǎn)(-3,0)任意作一條直線與雙曲線C交于A,B兩點(diǎn) (A,B都不同于點(diǎn)D),求證:
DA
DB
為定值;
(3)對(duì)于雙曲線Γ:
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
,E為它的右頂點(diǎn),M,N為雙曲線Γ上的兩點(diǎn)(都不同于點(diǎn)E),且EM⊥EN,那么直線MN是否過定點(diǎn)?若是,請(qǐng)求出此定點(diǎn)的坐標(biāo);若不是,說明理由.然后在以下三個(gè)情形中選擇一個(gè),寫出類似結(jié)論(不要求書寫求解或證明過程).
情形一:雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
及它的左頂點(diǎn);
情形二:拋物線y2=2px(p>0)及它的頂點(diǎn);
情形三:橢圓
x2
a2
+
y2
b2
=1(a>b>0)
及它的頂點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,b>0,a+b=1,則a+
1
a
+b+
1
b
的最小值為
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:松江區(qū)二模 題型:解答題

已知雙曲線C的中心在原點(diǎn),D(1,0)是它的一個(gè)頂點(diǎn),
d
=(1,
2
)
是它的一條漸近線的一個(gè)方向向量.
(1)求雙曲線C的方程;
(2)若過點(diǎn)(-3,0)任意作一條直線與雙曲線C交于A,B兩點(diǎn) (A,B都不同于點(diǎn)D),求證:
DA
DB
為定值;
(3)對(duì)于雙曲線Γ:
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
,E為它的右頂點(diǎn),M,N為雙曲線Γ上的兩點(diǎn)(都不同于點(diǎn)E),且EM⊥EN,那么直線MN是否過定點(diǎn)?若是,請(qǐng)求出此定點(diǎn)的坐標(biāo);若不是,說明理由.然后在以下三個(gè)情形中選擇一個(gè),寫出類似結(jié)論(不要求書寫求解或證明過程).
情形一:雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
及它的左頂點(diǎn);
情形二:拋物線y2=2px(p>0)及它的頂點(diǎn);
情形三:橢圓
x2
a2
+
y2
b2
=1(a>b>0)
及它的頂點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案