【題目】已知函數(shù)f(x)=x3﹣3x2 . (Ⅰ) 求f(x)的單調(diào)區(qū)間;
(Ⅱ) 若f(x)的定義域?yàn)閇﹣1,m]時(shí),值域?yàn)閇﹣4,0],求m的最大值.
【答案】解:(Ⅰ)f′(x)=3x2﹣6x=3x(x﹣2),
令f′(x)>0,解得:x>2或x<0,
令f′(x)<0,解得:0<x<2,
故f(x)在(﹣∞,0)遞增,在(0,2)遞減,在(2,+∞)遞增;
(Ⅱ)由(Ⅰ)f(﹣1)=﹣4,
故f(m)=m3﹣3m2≤0,解得:m≤3,
故m的最大值是3
【解析】(Ⅰ)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;(Ⅱ)問(wèn)題轉(zhuǎn)化為f(m)≤0,求出m的最大值即可.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的最大(小)值與導(dǎo)數(shù)的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A(0,0),B(1,0),C(2,1),D(0,3),將四邊形ABCD繞y軸旋轉(zhuǎn)一周,求所得旋轉(zhuǎn)體的表面積和體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}滿足: ,anan+1<0(n≥1),數(shù)列{bn}滿足:bn=an+12﹣an2(n≥1). (Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式
(Ⅱ)證明:數(shù)列{bn}中的任意三項(xiàng)不可能成等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的最小正周期為,且點(diǎn)是該函數(shù)圖象的一個(gè)最高點(diǎn).
(1)求函數(shù)的解析式;
(2)若,求函數(shù)的值域;
(3)把函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度,得到函數(shù)在上是單調(diào)增函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(x)=lnx,g(x)=f(x)+f′(x). (Ⅰ)求g(x)的單調(diào)區(qū)間和最小值;
(Ⅱ)討論g(x)與 的大小關(guān)系;
(Ⅲ)求a的取值范圍,使得g(a)﹣g(x)< 對(duì)任意x>0成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法: ①將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,均值與方差都不變;
②設(shè)有一個(gè)回歸方程 ,變量x增加一個(gè)單位時(shí),y平均增加3個(gè)單位;
③線性回歸方程 必經(jīng)過(guò)點(diǎn) ;
④在吸煙與患肺病這兩個(gè)分類變量的計(jì)算中,從獨(dú)立性檢驗(yàn)知,有99%的把握認(rèn)為吸煙與患肺病有關(guān)系時(shí),我們說(shuō)現(xiàn)有100人吸煙,那么其中有99人患肺。渲绣e(cuò)誤的個(gè)數(shù)是( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線過(guò)點(diǎn),圓:.
(1)求截得圓弦長(zhǎng)最長(zhǎng)時(shí)的直線方程;
(2)若直線被圓N所截得的弦長(zhǎng)為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】據(jù)氣象中心觀察和預(yù)測(cè):發(fā)生于地的沙塵暴一直向正南方向移動(dòng),其移動(dòng)速度與時(shí)間的函數(shù)圖像如圖所示,過(guò)線段上一點(diǎn)作橫軸的垂線,梯形在直線左側(cè)部分的面積即為內(nèi)沙塵暴所經(jīng)過(guò)的路程.
(1)當(dāng)時(shí),求的值;
(2)將隨變化的規(guī)律用數(shù)學(xué)關(guān)系式表示出來(lái);
(3)若城位于地正南方向,且距地650,試判斷這場(chǎng)沙塵暴是否會(huì)侵襲到城,如果會(huì),在沙塵暴發(fā)生后多長(zhǎng)時(shí)間它將侵襲到城?如果不會(huì),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方體ABCD-A1B1C1D1中,E為AB的中點(diǎn),F為AA1的中點(diǎn),求證:
(1)E、C、D1、F、四點(diǎn)共面;
(2)CE、D1F、DA三線共點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com