【題目】某部門為了解人們對(duì)“延遲退休年齡政策”的支持度,隨機(jī)調(diào)查了人,其中男性人.調(diào)查發(fā)現(xiàn)持不支持態(tài)度的有人,其中男性占.分析這個(gè)持不支持態(tài)度的樣本的年齡和性別結(jié)構(gòu),繪制等高條形圖如圖所示.
(1)在持不支持態(tài)度的人中,周歲及以上的男女比例是多少?
(2)調(diào)查數(shù)據(jù)顯示,個(gè)持支持態(tài)度的人中有人年齡在周歲以下.填寫下面的列聯(lián)表,問能否有的把握認(rèn)為年齡是否在周歲以下與對(duì)“延遲退休年齡政策”的態(tài)度有關(guān).
參考公式及數(shù)據(jù):,.
【答案】(1)見解析;(2)見解析
【解析】
(1)先求出周歲及以上的男性和女性的人數(shù),再將男性和女性人數(shù)相比可得出答案;
(2)先列出列聯(lián)表,并計(jì)算出的觀測(cè)值,根據(jù)臨界值表找出犯錯(cuò)誤的概率,即可對(duì)題中結(jié)論判斷正誤。
(1)由已知可得持不支持態(tài)度的人中有男性人,
由等高條形圖可知這個(gè)男性中年齡在周歲及以上的有人;
持不支持態(tài)度的人中有女性人,
由等高條形圖可知這個(gè)女性中年齡在周歲及以上的有人;
故所求在持不支持態(tài)度的人中,周歲及以上的男女比例是.
(2)由已知可得以下列聯(lián)表:
周歲以下 | 周歲及以上 | 總計(jì) | |
不支持 | |||
支持 | |||
總計(jì) |
計(jì)算得的觀測(cè)值,
所以有的把握認(rèn)為年齡是否在45周歲以下與對(duì)“延遲退休年齡政策”的態(tài)度有關(guān).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】通過隨機(jī)詢問110名性別不同的大學(xué)生是否愛好某項(xiàng)運(yùn)動(dòng),得到如表的列聯(lián)表:
男 | 女 | 總計(jì) | |
愛好 | 40 | 20 | 60 |
不愛好 | 20 | 30 | 50 |
總計(jì) | 60 | 50 | 110 |
0.050 | 0.010 | 0.001 | |
k | 3.841 | 6.635 | 10.828 |
算得,.見附表:參照附表,得到的正確結(jié)論是( 。
A. 在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
B. 在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)”
C. 有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
D. 有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex-e-x(x∈R且e為自然對(duì)數(shù)的底數(shù)).
(1)判斷函數(shù)f(x)的奇偶性與單調(diào)性.
(2)解關(guān)于t不等式f(x-t)+f(x2-2t)≥0對(duì)一切實(shí)數(shù)x都成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)將收集到的六組數(shù)據(jù)制作成散點(diǎn)圖如圖所示,并得到其回歸直線的方程為,計(jì)算其相關(guān)系數(shù)為,相關(guān)指數(shù)為.經(jīng)過分析確定點(diǎn)為“離群點(diǎn)”,把它去掉后,再利用剩下的5組數(shù)據(jù)計(jì)算得到回歸直線的方程為,相關(guān)系數(shù)為,相關(guān)指數(shù)為.以下結(jié)論中,不正確的是
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知對(duì)數(shù)函數(shù)過點(diǎn),.
(1)求的解析式,并指出的定義域;
(2)設(shè),求函數(shù)的零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線:,直線:.
(1)求曲線和直線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)的直角坐標(biāo)為,直線與曲線相交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著節(jié)能減排意識(shí)深入人心,共享單車在各大城市大范圍推廣,越來越多的市民在出行時(shí)喜歡選擇騎行共享單車.為了研究廣大市民在共享單車上的使用情況,某公司在我市隨機(jī)抽取了100名用戶進(jìn)行調(diào)查,得到如下數(shù)據(jù):
每周使用次數(shù) | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 4 | 3 | 3 | 7 | 8 | 30 |
女 | 6 | 5 | 4 | 4 | 6 | 20 |
合計(jì) | 10 | 8 | 7 | 11 | 14 | 50 |
(1)如果用戶每周使用共享單車超過3次,那么認(rèn)為其“喜歡騎行共享單車”.請(qǐng)完成下面的2×2列聯(lián)表,并判斷能否在犯錯(cuò)誤概率不超過0.05的前提下,認(rèn)為是否“喜歡騎行共享單車”與性別有關(guān);
不喜歡騎行共享單車 | 喜歡騎行共享單車 | 合計(jì) | |
男 | |||
女 | |||
合計(jì) |
(2)每周騎行共享單車6次及6次以上的用戶稱為“騎行達(dá)人”,將頻率視為概率,在我市所有的“騎行達(dá)人”中隨機(jī)抽取4名,求抽取的這4名“騎車達(dá)人”中,既有男性又有女性的概率.
附表及公式:,其中;
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】空氣質(zhì)量指數(shù)AQI是一種反映和評(píng)價(jià)空氣質(zhì)量的方法,AQI指數(shù)與空氣質(zhì)量對(duì)應(yīng)如表所示:
AQI | 0~50 | 51~100 | 101~150 | 151~200 | 201~300 | 300以上 |
空氣質(zhì)量 | 優(yōu) | 良 | 輕度污染 | 中度污染 | 重度污染 | 嚴(yán)重污染 |
如圖是某城市2018年12月全月的AQI指數(shù)變化統(tǒng)計(jì)圖:
根據(jù)統(tǒng)計(jì)圖判斷,下列結(jié)論正確的是( )
A. 整體上看,這個(gè)月的空氣質(zhì)量越來越差
B. 整體上看,前半月的空氣質(zhì)量好于后半個(gè)月的空氣質(zhì)量
C. 從AQI數(shù)據(jù)看,前半月的方差大于后半月的方差
D. 從AQI數(shù)據(jù)看,前半月的平均值小于后半月的平均值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)的最小值為1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在區(qū)間[2a,a+1]上不單調(diào),求實(shí)數(shù)a的取值范圍;
(3)在區(qū)間[﹣1,1]上,y=f(x)的圖象恒在y=2x+2m+1的圖象上方,試確定實(shí)數(shù)m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com