下列結(jié)論中,正確的是( 。
A、若a>b,則a2>b2
B、若a>b,c>d,則ac>bd
C、若a-c>a-d,則c>d
D、若a>b,則a(c2+1)>b(c2+1)
考點(diǎn):不等式的基本性質(zhì)
專(zhuān)題:不等式的解法及應(yīng)用
分析:由條件通過(guò)舉反例、或利用不等式的基本性質(zhì),判斷各個(gè)選項(xiàng)是否正確,從而得出結(jié)論.
解答: 解:令a=-1,b=-2,c=0,可得A、B都不正確,故排除A、B.
由a-c>a-d,則-c>-d,∴c<d,故C不正確,故排除C.
由a>b,c2+1>0,利用不等式的基本性質(zhì)可得a(c2+1)>b(c2+1),故D正確,
故選:D.
點(diǎn)評(píng):本題主要考查不等式的基本性質(zhì),利用特殊值代入法,排除不符合條件的選項(xiàng),是一種簡(jiǎn)單有效的方法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tan(π-α)=-2,則
1
sin2α-2cos2α
=(  )
A、2
B、
2
5
C、
5
2
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若兩條直線(xiàn)y=a2x-1與y=(a+2)x-a+1互相平行,則a等于(  )
A、2B、1C、-2D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

《萊茵德紙草書(shū)》是世界上最古老的數(shù)學(xué)著作之一,書(shū)中有一道這樣的題目(改編):把100個(gè)面包分給5個(gè)人,使每個(gè)人所得成等差數(shù)列,且使較大的三份之和的
1
3
是較小的兩份之和,則最小的1份為( 。
A、10B、15C、20D、30

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},則A∪B=( 。
A、{2}
B、{2,3,4}
C、{1,2,3,4}
D、{0,2,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線(xiàn)xcosα+ysinα+1=0,α∈(0,
π
2
)的傾斜角為( 。
A、α
B、
π
2
C、π-α
D、
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,A、B、C的對(duì)邊分別為a、b、c,若A=30°,C=105°,b=8,則a等于( 。
A、4
B、4
2
C、4
3
D、4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b為常數(shù),a≠0,函數(shù)f(x)=ax2+bx(x∈R),f(2)=0,且方程f(x)=x有等根.
(1)求f(x)的解析式及值域;
(2)設(shè)集合A={x|f(x)+k>0},B={x|-2≤x≤3},若A⊆B,求實(shí)數(shù)k的取值范圍;
(3)是否存在實(shí)數(shù)m,n,使f(x)的定義域和值域分別為[m,n]和[2m,2n]?若存在,求出m,n的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2
3
sin(ωx+
π
4
)•cos(ωx+
π
4
)-sin(2ωx+π)(ω>0),且函數(shù)f(x)的最小正周期為π.
(1)求函數(shù)f(x)的解析式;
(2)若將函數(shù)f(x)的圖象向右平移
π
3
個(gè)單位長(zhǎng)度,得到函數(shù)g(x)的圖象,求函數(shù)g(x)在區(qū)間[0,
π
2
]上的最大值和最小值,并指出此時(shí)x的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案