如圖所示,PA⊥平面ABCD,ABCD是矩形,AB=1,,點F是PB的中點,點E在邊BC上移動.

(1)若,求證:;
(2)若二面角的大小為,則CE為何值時,三棱錐的體積為.
(1)詳見解析;(2) .

試題分析:(1)要證明直線和直線垂直,往往通過證明直線和平面垂直來實現(xiàn).本題只需證明直線,由,且為PB中點,可證明,故只需證明,再轉(zhuǎn)化為證明,由,,從而可證明;(2)由(1)知,,故=60°,從而可求出,利用三棱錐的體積為,列關(guān)于的等式,求即可.

試題解析:,為PB中點, ∴     1分
⊥平面,∴     2分
是矩形,∴         3分
,而  4分
,∴       5分
,∴       6分
(2)由(1)知:   7分
為二面角的一個平面角,則=60°      8分
                                       9分
,解得           11分
時,三棱錐的體積為                     12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

菱形中,,且,現(xiàn)將三角形沿著折起形成四面體,如圖所示.

(1)當(dāng)為多大時,?并證明;
(2)在(1)的條件下,求點到面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖:已知長方體的底面是邊長為的正方形,高,的中點,交于點.
(1)求證:平面;
(2)求證:∥平面
(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖在三棱柱ABC-A1B1C1中,AB⊥AC,頂點A1在底面ABC上的射影恰為點B,且AB=AC=A1B=2.
 
(1)證明:平面A1AC⊥平面AB1B;
(2)若點P為B1C1的中點,求三棱錐P-ABC與四棱錐P-AA1B1B的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖甲,是邊長為6的等邊三角形,分別為靠近的三等分點,點為邊邊的中點,線段交線段于點.將沿翻折,使平面平面,連接,形成如圖乙所示的幾何體.

(1)求證:平面
(2)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在斜二測畫法下,四邊形A′B′C′D′是下底角為45°的等腰梯形,其下底長為5,一腰長為,則原四邊形的面積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

一個正三棱柱的側(cè)棱長和底面邊長相等,體積為2,它的三視圖中的俯視圖如圖所示,側(cè)視圖是一個矩形,則這個矩形的面積是(  )
A.4 B.2 C.2D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

正三棱錐內(nèi)接于球,且底面邊長為,側(cè)棱長為2,則球的表面積為(    )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知某一多面體內(nèi)接于一個簡單組合體,如果該組合體的正視圖.測試圖.俯視圖均如圖所示,且圖中的四邊形是邊長為2的正方形,則該球的表面積是_______________

查看答案和解析>>

同步練習(xí)冊答案