【題目】已知向量a=(cos α,sin α),b=(cos β,sin β),c=(-1,0).
(1) 求向量b+c的模的最大值;
(2) 若α=,且a⊥(b+c),求cos β的值.
【答案】(1)2(2)見解析
【解析】試題分析(1)根據(jù)向量加法坐標表示以及向量模的坐標表示可得|b+c|2=2(1-cos β),再根據(jù)三角函數(shù)有界性可得模的最值(2)由向量垂直可得數(shù)量積為零,根據(jù)向量數(shù)量積坐標表示可得關于β的方程,解得β值 ,即得cos β的值.
試題解析:解:(1) b+c=(cos β-1,sin β),則|b+c|2=(cos β-1)2+sin2β=2(1-cos β).
∵ -1≤cos β≤1,
∴ 0≤|b+c|2≤4,即0≤|b+c|≤2.
當cos β=-1時,|b+c|取最大值2,
∴ 向量b+c的模的最大值為2.
(2) ∵ b+c=(cos β-1,sin β),
∴ a·(b+c)=cos αcos β-cos α+sin αsin β
=cos(α-β)-cos α.
∵ a⊥(b+c),
∴ a·(b+c)=0,即cos(α-β)=cos α.
又α=,∴ cos=cos,β-=2kπ± (k∈Z),
∴ β=2kπ+或β=2kπ,k∈Z,
∴ cos β=0或cos β=1.
科目:高中數(shù)學 來源: 題型:
【題目】某校100名學生其中考試語文成績的頻率分布直方圖所示,其中成績分組區(qū)間是:
.
(1)求圖中的值;
(2)根據(jù)頻率分布直方圖,估計這100名學生語文成績的平均分;
(3)若這100名學生語文某些分數(shù)段的人數(shù)與數(shù)學成績相應分數(shù)段的人數(shù)之比如下表所示,
求數(shù)學成績在之外的人數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列滿足,其中, .
(1)求, , ,并猜想的表達式(不必寫出證明過程);
(2)設,數(shù)列的前項和為,求證: .
(B)已知數(shù)列的前項和為,且滿足, .
(1)求, , , ,并猜想的表達式(不必寫出證明過程);
(2)設, ,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知平行四邊形中,,為的中點,且△是等邊三角形,沿把△折起至的位置,使得.
(1)是線段的中點,求證:平面;
(2)求證:;
(3)求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題錯誤的是 ( )
A. 如果平面平面,那么平面內一定存在直線平行于平面
B. 如果平面不垂直平面,那么平面內一定不存在直線垂直于平面
C. 如果平面平面,平面平面,且,那么
D. 如果平面平面,那么平面內所有直線都垂直于平面
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com