【題目】對于一個具有正南正北、正東正西方向規(guī)則布局的城鎮(zhèn)街道,從一點到另一點的距離是在南北方向上行進的距離加上在東西方向上行進的距離,這種距離即曼哈頓距離,也叫出租車距離”.對于平面直角坐標系中的點,兩點間的曼哈頓距離.

1)如圖,若為坐標原點,,兩點坐標分別為,求,;

2)若點滿足,試在圖中畫出點的軌跡,并求該軌跡所圍成圖形的面積;

3)已知函數(shù),試在圖象上找一點,使得最小,并求出此時點的坐標.

【答案】15,5,4 2)圖見解析,面積為50; 3

【解析】

1)由題中新定義即可求解

2)設點坐標為,由新定義可得,即點的軌跡為正方形,從而可求得面積.

3)由新定義,利用函數(shù)的單調性即可求出最小值,進而求出點的坐標.

解:(1)由題得,

2

點坐標為,因為點滿足,

,點的軌跡為如圖所示正方形(說明:畫出圖形即可,不用說明理由)

該正方形所圍成圖形的面積.

3)設點坐標為,則由題,因為,

,任取,且,

,

,且,,

上是減函數(shù),

,即點的坐標為時,,即最小為4.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)的定義域為(-2,2),函數(shù)g(x)=f(x-1)+f(3-2x).

(1)求函數(shù)g(x)的定義域

(2)f(x)是奇函數(shù),且在定義域上單調遞減,求不等式g(x)0的解集

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】交強險是車主必須為機動車購買的險種,若普通6座以下私家車投保交強險第一年的費用(基準保費)統(tǒng)一為a元,在下一年續(xù)保時,實行的是費率浮動機制,且保費與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系.發(fā)生交通事故的次數(shù)越多,費率也就越高,具體浮動情況如下表:

交強險浮動因素和費率浮動比率表

浮動因素

浮動比率

A1

上一個年度未發(fā)生有責任道路交通事故

下浮10%

A2

上兩個年度未發(fā)生有責任道路交通事故

下浮20%

A3

上三個及以上年度未發(fā)生有責任道路交通事故

下浮30%

A4

上一個年度發(fā)生一次有責任不涉及死亡的道路交通事故

0%

A5

上一個年度發(fā)生兩次及兩次以上有責任道路交通事故

上浮10%

A6

上一個年度發(fā)生有責任道路交通死亡事故

上浮30%

某機構為了研究某一品牌普通6座以下私家車的投保情況,隨機抽取了60輛車齡已滿三年該品牌同型號私家車的下一年續(xù)保時的情況,統(tǒng)計得到了下面的表格:

類型

A1

A2

A3

A4

A5

A6

數(shù)量

10

5

5

20

15

5

(1)求一輛普通6座以下私家車在第四年續(xù)保時保費高于基本保費的頻率;

(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車.假設購進一輛事故車虧損5 000元,一輛非事故車盈利10 000元.且各種投保類型的頻率與上述機構調查的頻率一致,完成下列問題:

①若該銷售商店內有6輛(車齡已滿三年)該品牌二手車,某顧客欲在店內隨機挑選2輛車,求這2輛車恰好有一輛為事故車的概率;

②若該銷售商一次購進120輛(車齡已滿三年)該品牌二手車,求一輛車盈利的平均值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)判斷的單調性,并說明理由;

2)判斷的奇偶性,并用定義證明;

3)若不等式對任意恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐底面,,,上一點,且.

(1)求證:平面;

(2),,,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“荊、荊、襄、宜七校聯(lián)考”正在如期開展,組委會為了解各所學校學生的學情,欲從四地選取200人作樣本開展調研.若來自荊州地區(qū)的考生有1000人,荊門地區(qū)的考生有2000人,襄陽地區(qū)的考生有3000人,宜昌地區(qū)的考生有2000人.為保證調研結果相對準確,下列判斷正確的有( 。

①用分層抽樣的方法分別抽取荊州地區(qū)學生25人、荊門地區(qū)學生50人、襄陽地區(qū)學生75人、宜昌地區(qū)學生50人;

②可采用簡單隨機抽樣的方法從所有考生中選出200人開展調研;

③宜昌地區(qū)學生小劉被選中的概率為

④襄陽地區(qū)學生小張被選中的概率為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某快餐代賣店代售多種類型的快餐,深受廣大消費者喜愛.其中,種類型的快餐每份進價為元,并以每份元的價格銷售.如果當天20:00之前賣不完,剩余的該種快餐每份以元的價格作特價處理,且全部售完.

(1)若該代賣店每天定制種類型快餐,求種類型快餐當天的利潤(單位:元)關于當天需求量(單位:份,)的函數(shù)解析式;

(2)該代賣店記錄了一個月天的種類型快餐日需求量(每天20:00之前銷售數(shù)量)

日需求量

天數(shù)

(i)假設代賣店在這一個月內每天定制種類型快餐,求這一個月種類型快餐的日利潤(單位:元)的平均數(shù)(精確到);

(ii)若代賣店每天定制種類型快餐,以天記錄的日需求量的頻率作為日需求量發(fā)生的概率,求種類型快餐當天的利潤不少于元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年來,中美貿易摩擦不斷.特別是美國對我國華為的限制.盡管美國對華為極力封鎖,百般刁難,并不斷加大對各國的施壓,拉攏他們抵制華為5G,然而這并沒有讓華為卻步.華為在2018年不僅凈利潤創(chuàng)下記錄,海外增長同樣強勁.今年,我國華為某一企業(yè)為了進一步增加市場競爭力,計劃在2020年利用新技術生產某款新手機.通過市場分析,生產此款手機全年需投入固定成本250萬,每生產(千部)手機,需另投入成本萬元,且 ,由市場調研知,每部手機售價0.7萬元,且全年內生產的手機當年能全部銷售完.

)求出2020年的利潤(萬元)關于年產量(千部)的函數(shù)關系式,(利潤=銷售額—成本);

2020年產量為多少(千部)時,企業(yè)所獲利潤最大?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在R上的函數(shù)fx)>0,對任意xyR都有fx+y)=fx fy)成立,且當x0時,fx)>1

1)求f0)的值;

2)求證fx)在R上是增函數(shù);

3)若fk3xf3x9x2)<1對任意xR恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習冊答案