【題目】如圖,在正三棱柱中,底面為正三角形,分別是棱的中點(diǎn),且.
(Ⅰ)求證:;
(Ⅱ)求證:;
【答案】(I)證明見解析;(II)證明見解析.
【解析】
試題分析:(I)設(shè)的中點(diǎn)為,連接,,欲證明,證明直線內(nèi)的一條直線,即只需證明,通過證明四邊形是平行四邊形即可證明;(II)欲證明,只需證明的兩條相交直線,即只需、.通過證明可證明,利用勾股定理可證明.
試題解析:(Ⅰ)設(shè)的中點(diǎn)為,連接,,………………1分
∵,,∴……2分
∴是平行四邊形,∴………………3分
∵,,
∴…………4分
(Ⅱ)∵,∴平面,
∵,∴,∴,
設(shè):,
則,在中,,……8分
同理,,…………………………………………9分
∵,∴,∴,
∴,
∴,∴,………………10分
又,∴.……………………12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與軸的正半軸重合,圓的極坐標(biāo)方程是,直線的參數(shù)方程是(為參數(shù)).
(1)若, 為直線與軸的交點(diǎn), 是圓上一動(dòng)點(diǎn),求的最大值;
(2)若直線被圓截得的弦長為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),其中,曲線在點(diǎn)處的切線與軸相交于點(diǎn).
(1)確定的值;
(2)求函數(shù)的單調(diào)區(qū)間與極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=log2(1-x),g(x)=log2(x+1),設(shè)F(x)=f(x)-g(x).
(1)判斷函數(shù)F(x)的奇偶性;
(2)證明函數(shù)F(x)是減函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,海上有、兩個(gè)小島相距,船將保持觀望島和島所成的視角為,現(xiàn)從船上派下一只小艇沿方向駛至處進(jìn)行作業(yè),且.設(shè).
(1)用分別表示和,并求出的取值范圍;
(2)0晚上小艇在處發(fā)出一道強(qiáng)烈的光線照射島,島至光線的距離為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)設(shè)函數(shù)的圖象在點(diǎn)兩處的切線分別為l1,l2.若,且,求實(shí)數(shù)c的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解大學(xué)生觀看浙江衛(wèi)視綜藝節(jié)目“奔跑吧兄弟”是否與性別有關(guān),一所大學(xué)心理學(xué)教師從該校學(xué)生中隨機(jī)抽取了50人進(jìn)行問卷調(diào)查,得到了如下的列聯(lián)表:
喜歡看“奔跑吧兄弟” | 不喜歡看“奔跑吧兄弟” | 合計(jì) | |
女生 | 5 | ||
男生 | 10 | ||
合計(jì) | 50 |
若該教師采用分層抽樣的方法從50份問卷調(diào)查中繼續(xù)抽查了10份進(jìn)行重點(diǎn)分析,知道其中喜歡看“奔跑吧兄弟”的有6人.
(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;
(2)是否有的把握認(rèn)為喜歡看“奔跑吧兄弟”節(jié)目與性別有關(guān)?說明你的理由;
(3)已知喜歡看“奔跑吧兄弟”的10位男生中,還喜歡看新聞,還喜歡看動(dòng)畫片,還喜歡看韓劇,現(xiàn)再從喜歡看新聞、動(dòng)畫片和韓劇的男生中各選出1名進(jìn)行其他方面的調(diào)查,求和不全被選中的概率.
下面的臨界值表供參考:
P(χ2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),曲線在點(diǎn)處的切線為,若時(shí),有極值.
(1)求的值;
(2)求在上的最大值和最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com