已知m∈R,對p:x1和x2是方程x2-ax-2=0的兩個根,不等式|m-5|≤|x1-x2|對任意實數(shù)a∈[1,2]恒成立;q:函數(shù)f(x)=3x2+2mx+m+有兩個不同的零點.求使“p且q”為假命題、“p或q”為真命題的實數(shù)m的取值范圍.
【解析】
試題分析:解:由題設(shè)知x1+x2=a,x1x2=-2,
∴|x1-x2|==.
a∈[1,2]時,的最小值為3,要使|m-5|≤|x1-x2|對任意實數(shù)a∈[1,2]恒成立,只需|m-5|≤3,即2≤m≤8.
由已知,得f(x)=3x2+2mx+m+=0的判別式Δ=4m2-12(m+)=4m2-12m-16>0,得m<-1或m>4,
綜上,要使“p且q”為假命題、“p或q”為真命題,只需p真q假或p假q真,即 或 解得實數(shù)m的取值范圍是.
考點:邏輯聯(lián)結(jié)詞
點評:邏輯聯(lián)結(jié)詞有三個:且、或和非。在且命題中,只有兩個命題都為真時,且命題才為真,而在或命題中,只要一個命題為真時,或命題就為真。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
4 | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:不詳 題型:解答題
4 |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:《集合與簡易邏輯》2013年山東省淄博市高三數(shù)學(xué)復(fù)習(xí)(理科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com