若數(shù)列{an}滿足
an+2
an+1
-
an+1
an
=k(k為常數(shù)),則稱{an}為等比差數(shù)列,k叫公比差.已知{an} 是以2為公比差的等比差數(shù)列,其中a1=1,a2=2,則a5=
 
分析:由n=1,2,3,分別求出a1,a2,a3,a4,a5
解答:解:根據(jù)定義,得
a3
2
-
2
1
=2
,∴a3=8,
a4
8
-
8
2
=2
,∴a4=48,
a5
48
-
48
6
=2
,∴a5=384,
故答案為:384.
點(diǎn)評(píng):本題主要考查數(shù)列遞推式的知識(shí)點(diǎn),解答本題的關(guān)鍵是計(jì)算要準(zhǔn)確.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列關(guān)于數(shù)列的命題中,正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•煙臺(tái)二模)若數(shù)列{an}滿足an+12-
a
2
n
=d
(d為正常數(shù),n∈N+),則稱{an}為“等方差數(shù)列”.甲:數(shù)列{an}為等方差數(shù)列;乙:數(shù)列{an}為等差數(shù)列,則甲是乙的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•三明模擬)若數(shù)列{an}滿足a≤an≤b,其中a、b是常數(shù),則稱數(shù)列{an}為有界數(shù)列,a是數(shù)列{an}的下界,b是數(shù)列{an}的上界.現(xiàn)要在區(qū)間[-1,2)中取出20個(gè)數(shù)構(gòu)成有界數(shù)列{bn},并使數(shù)列{bn}有且僅有兩項(xiàng)差的絕對(duì)值小于
1
m
,那么正數(shù)m的最小取值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年福建省三明市高三質(zhì)量檢查數(shù)學(xué)試卷(解析版) 題型:選擇題

若數(shù)列{an}滿足a≤an≤b,其中a、b是常數(shù),則稱數(shù)列{an}為有界數(shù)列,a是數(shù)列{an}的下界,b是數(shù)列{an}的上界.現(xiàn)要在區(qū)間[-1,2)中取出20個(gè)數(shù)構(gòu)成有界數(shù)列{bn},并使數(shù)列{bn}有且僅有兩項(xiàng)差的絕對(duì)值小于,那么正數(shù)m的最小取值是( )
A.5
B.
C.7
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年福建省三明市普通高中畢業(yè)班質(zhì)量檢查數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

若數(shù)列{an}滿足a≤an≤b,其中a、b是常數(shù),則稱數(shù)列{an}為有界數(shù)列,a是數(shù)列{an}的下界,b是數(shù)列{an}的上界.現(xiàn)要在區(qū)間[-1,2)中取出20個(gè)數(shù)構(gòu)成有界數(shù)列{bn},并使數(shù)列{bn}有且僅有兩項(xiàng)差的絕對(duì)值小于,那么正數(shù)m的最小取值是( )
A.5
B.
C.7
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案