【題目】已知函數(shù).
(1)求的單調(diào)區(qū)間;
(2)若,求的取值范圍.
【答案】(1)當(dāng)時(shí),在單調(diào)遞減;當(dāng)時(shí),在單調(diào)遞減;在單調(diào)遞增. (2)
【解析】
(1)由題意,求得函數(shù)的導(dǎo)數(shù),分類(lèi)討論,即可求解函數(shù)的單調(diào)區(qū)間;
(2)由(1)知,當(dāng)時(shí),得到不恒成立,時(shí),只需,令,利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性與最值,即可求解。
解:(1)的定義域?yàn)?/span>
當(dāng)時(shí),,所以在單調(diào)遞減;
當(dāng)時(shí),,得,當(dāng)時(shí),,當(dāng)時(shí),
所以當(dāng)時(shí),在單調(diào)遞減;在單調(diào)遞增.
綜上,當(dāng)時(shí),在單調(diào)遞減;
當(dāng)時(shí),在單調(diào)遞減;在單調(diào)遞增
(2)由(1)知,當(dāng)時(shí),
在單調(diào)遞減,而,所以不恒成立,
時(shí),在單調(diào)遞減;在單調(diào)遞增,所以,
依題,只需
令,則,所以在單調(diào)遞增
而,所以當(dāng)時(shí),,
當(dāng)時(shí),
所以當(dāng)時(shí),
所以若,則的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),若不等式在時(shí)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)(a>0,且a≠1)的反函數(shù)為,函數(shù)y=g(x)的圖像與的圖像關(guān)于點(diǎn)(a,0)對(duì)稱(chēng)。
(1)求函數(shù)y=g(x)的解析式。
(2)是否存在實(shí)數(shù)a,使得當(dāng)時(shí),恒有成立?若存在,求出a的取值范圍;若不存在,說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如城鎮(zhèn)小汽車(chē)的普及率為75%,即平均每100個(gè)家庭有75個(gè)家庭擁有小汽車(chē),若從如城鎮(zhèn)中任意選出5個(gè)家庭,則下列結(jié)論成立的是( )
A.這5個(gè)家庭均有小汽車(chē)的概率為
B.這5個(gè)家庭中,恰有三個(gè)家庭擁有小汽車(chē)的概率為
C.這5個(gè)家庭平均有3.75個(gè)家庭擁有小汽車(chē)
D.這5個(gè)家庭中,四個(gè)家庭以上(含四個(gè)家庭)擁有小汽車(chē)的概率為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某課題小組共10人,已知該小組外出參加交流活動(dòng)次數(shù)為1,2,3的人數(shù)分別為3,3, 4,現(xiàn)從這10人中隨機(jī)選出2人作為該組代表參加座談會(huì).
(1)記“選出2人外出參加交流活動(dòng)次數(shù)之和為4”為事件A,求事件A發(fā)生的概率;
(2)設(shè)X為選出2人參加交流活動(dòng)次數(shù)之差的絕對(duì)值,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列關(guān)于簡(jiǎn)單幾何體的說(shuō)法中正確的是( )
①有兩個(gè)面互相平行,其余各面都是平行四邊形的多面體是棱柱;
②有一個(gè)面是多邊形,其余各面都是三角形的幾何體是棱錐;
③有兩個(gè)底面平行且相似,其余各面都是梯形的多面體是棱臺(tái);
④空間中到定點(diǎn)的距離等于定長(zhǎng)的所有點(diǎn)的集合是球面.
A.①②B.③④C.④D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】要測(cè)量底部不能到達(dá)的電視塔AB的高度,在C點(diǎn)測(cè)得塔頂A的仰角是45°,在D點(diǎn)測(cè)得塔頂A的仰角是30°,并測(cè)得水平面上的∠BCD=120°,CD="40" m,則電視塔的高度為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)m=1時(shí),若方程在區(qū)間上有唯一的實(shí)數(shù)解,求實(shí)數(shù)a的取值范圍;
(3)當(dāng)m>0時(shí),若對(duì)于區(qū)間[1,2]上的任意兩個(gè)實(shí)數(shù)x1,x2,且x1<x2,都有成立,求實(shí)數(shù)m的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知角α的頂點(diǎn)與原點(diǎn)O重合,始邊與x軸的非負(fù)半軸重合,它的終邊上有一點(diǎn)P的坐標(biāo)是(3a,a),其中a≠0.
(1)求cos(α)的值;
(2)若tan(2α+β)=1,求tanβ的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com