【題目】已知的三個內角,所對的邊分別為,設.

1)若,求的夾角;

2)若,求周長的最大值.

【答案】12

【解析】

1)將代入可求得.根據(jù)平面向量數(shù)量積的坐標運算求得,由數(shù)量積的定義即可求得,進而得夾角.

2)根據(jù)及向量模的坐標表示,可求得.再由余弦定理可得.結合基本不等式即可求得的最大值,即可求得周長的最大值;或由正弦定理,用角表示出,結合輔助角公式及角的取值范圍,即可求得的取值范圍,進而求得周長的最大值.

1,所以,

因為,

,

,,

,

,

2)因為,,

所以,

方法1.由余弦定理,.

,

,

,(當且僅當時取等號)

所以周長的最大值為.

方法2.由正弦定理可知,

,

,,

所以,

,,

,

,

所以當,取最大值.

所以周長的最大值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,.

(1)求的極值;

(2)若對任意的,當時,恒成立,求實數(shù)的最大值;

(3)若函數(shù)恰有兩個不相等的零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知.

1)當時,求的單調區(qū)間;

2)若函數(shù)處取得極大值,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】平面直角坐標系中,橢圓C的離心率是,拋物線E的焦點FC的一個頂點.

)求橢圓C的方程;

)設PE上的動點,且位于第一象限,E在點P處的切線C交與不同的兩點A,B,線段AB的中點為D,直線OD與過P且垂直于x軸的直線交于點M

i)求證:點M在定直線上;

ii)直線y軸交于點G,記的面積為,的面積為,求的最大值及取得最大值時點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定點,圓,點為圓上動點,線段的垂直平分線交于點,記的軌跡為曲線.

1)求曲線的方程;

2)過點作平行直線,分別交曲線于點、和點、,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,函數(shù)Fx=min{2|x1|,x22ax+4a2}

其中min{p,q}=

)求使得等式Fx=x22ax+4a2成立的x的取值范圍;

)()求Fx)的最小值ma);

)求Fx)在區(qū)間[0,6]上的最大值Ma.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)滿足:①定義為;②.

1)求的解析式;

2)若;均有成立,求的取值范圍;

3)設,試求方程的解.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】狄利克雷函數(shù)是高等數(shù)學中的一個典型函數(shù),若,則稱為狄利克雷函數(shù).對于狄利克雷函數(shù),給出下面4個命題:①對任意,都有;②對任意,都有;③對任意,都有 ;④對任意,都有.其中所有真命題的序號是

A. ①④ B. ②③ C. ①②③ D. ①③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國古代數(shù)學著作《算法統(tǒng)宗》中記載了這樣的一個問題:三百七十八里關,初行健步不為難,次日腳痛減一半,六朝才得到其關,要見次日行里數(shù),請公仔細算相還,其大意為:有一個人走了378里路,第一天健步行走,從第二天起其因腳痛每天走的路程為前一天的一半,走了6天后到達了目的地,問此人第三天走的路程里數(shù)為(

A.192B.48C.24D.88

查看答案和解析>>

同步練習冊答案