【題目】請(qǐng)從下面三個(gè)條件中任選一個(gè),補(bǔ)充在下面的橫線(xiàn)上,并解答.

的面積為

中,內(nèi)角A,BC所對(duì)的邊分別為a,b,c,已知bc=2,cosA=,

1)求a

2)求的值.

【答案】1)不論選哪種條件,a=82

【解析】

方案一:選擇條件①:(1)首先利用向量的加法以及向量的數(shù)量積可得,從而可求出、,然后再利用余弦定理即可求解.

2)利用余弦定理可得,再利用同角三角函數(shù)的基本關(guān)系求出,由二倍角公式以及兩角和的余弦公式即可求解.

方案二:選擇條件②:(1)求出、,再利用余弦定理即可求解.

2)同方案一

方案三:選擇條件③:(1)利用同角三角函數(shù)的基本關(guān)系求出,再利用三角形的面積公式可得,求出、,再利用余弦定理即可求解.

2)同方案一.

解:方案一:選擇條件①:

1

bc=24

解得(舍去)

a=8

2

方案二:選擇條件②:

1)由解得(舍去)

a=8

2)同方案一

方案三:選擇條件③:

1)∵

bc=24

解得(舍)

a=8

2)同方案一.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的極值點(diǎn)個(gè)數(shù);

2)若有兩個(gè)極值點(diǎn),試判斷的大小關(guān)系并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓E)的焦點(diǎn)為,以原點(diǎn)O為圓心,橢圓E的短半軸長(zhǎng)為半徑的圓與直線(xiàn)相切.

1)求橢圓E的方程;

2)過(guò)點(diǎn)F的直線(xiàn)l交橢圓EM,N兩點(diǎn),點(diǎn)P的坐標(biāo)為,直線(xiàn)x軸交于A點(diǎn),直線(xiàn)x軸交于B點(diǎn),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四點(diǎn)均在函數(shù)fx)=log2的圖象上,若四邊形ABCD為平行四邊形,則四邊形ABCD的面積是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=|2x1|3|x+1|,設(shè)fx)的最大值為M.

1)求M;

2)若正數(shù)ab滿(mǎn)足Mab,證明:a4b+ab4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】著名物理學(xué)家李政道說(shuō):科學(xué)和藝術(shù)是不可分割的”.音樂(lè)中使用的樂(lè)音在高度上不是任意定的,它們是按照嚴(yán)格的數(shù)學(xué)方法確定的.我國(guó)明代的數(shù)學(xué)家、音樂(lè)理論家朱載填創(chuàng)立了十二平均律是第一個(gè)利用數(shù)學(xué)使音律公式化的人.十二平均律的生律法是精確規(guī)定八度的比例,把八度分成13個(gè)半音,使相鄰兩個(gè)半音之間的頻率比是常數(shù),如下表所示,其中表示這些半音的頻率,它們滿(mǎn)足.若某一半音與的頻率之比為,則該半音為(

頻率

半音

C

D

E

F

G

A

B

C(八度)

A.B.GC.D.A

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一條曲線(xiàn)Cy軸右側(cè),曲線(xiàn)C上任意一點(diǎn)到點(diǎn)的距離減去它到y軸的距離都等于1.

1)求曲線(xiàn)C的方程;

2)直線(xiàn)與軌跡C交于AB兩點(diǎn),問(wèn):在x軸上是否存在定點(diǎn),使得直線(xiàn)關(guān)于x軸對(duì)稱(chēng)而與直線(xiàn)的位置無(wú)關(guān),若存在,求出點(diǎn)M的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓)的右焦點(diǎn)為,左右頂點(diǎn)分別為、,,過(guò)點(diǎn)的直線(xiàn)(不與軸重合)交橢圓、點(diǎn),直線(xiàn)軸的交點(diǎn)為,與直線(xiàn)的交點(diǎn)為.

1)求橢圓的方程;

2)若,求出點(diǎn)的坐標(biāo);

3)求證:、三點(diǎn)共線(xiàn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)上單調(diào)遞增,求實(shí)數(shù)的取值范圍;

(2)若函數(shù)有兩個(gè)不同的零點(diǎn).

(。┣髮(shí)數(shù)的取值范圍;

(ⅱ)求證:.(其中的極小值點(diǎn))

查看答案和解析>>

同步練習(xí)冊(cè)答案