【題目】如圖所示,在三棱錐中,都是邊長為2的等邊三角形,、、、分別是棱、的中點.

(1)證明:四邊形為矩形;

(2)若平面平面,求點到平面的距離.

【答案】(1)見證明;(2)

【解析】

(1)運用中位線定理,證得四邊形平行四邊形,再取BD的中點O,連接,,運用等邊三角形的性質(zhì)和線面垂直的判定定理,即可得證;

(2)由題意可得平面. 點到平面的距離等于點到平面的距離.證明平面,求OM的長即可.

解:(1)如圖,設(shè)的中點為,連接,,

、、分別是棱、、的中點.

,且

,且,

∴四邊形為平行四邊形.

都是等邊三角形,

,,

,∴平面,故,

又由上知,,∴,

∴四邊形為矩形.

(2)如圖,設(shè),,連接,過.

,平面,平面

平面.

∴點到平面的距離等于點到平面的距離,

∵在(1)的證明中有平面,平面

,故由可得.

又∵,,

平面,

到平面的距離為.

∵平面平面,平面平面,,平面,

平面

,于是.

又∵都是邊長為2的等邊三角形,

,故

∴在中,,

∴點到平面的距離為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐P-ABC中,PA⊥底面ABC,AC⊥BC,H為PC的中點,M為AH中點,PA=AC=2,BC=1.

(Ⅰ)求證:AH⊥平面PBC;

(Ⅱ)求PM與平面AHB成角的正弦值;

(Ⅲ)在線段PB上是否存在點N,使得MN∥平面ABC,若存在,請說明點N的位置,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為調(diào)查高二年級學(xué)生的身高情況,按隨機抽樣的方法抽取80名學(xué)生,得到男生身高情況的頻率分布直方圖((1))和女生身高情況的頻率分布直方圖((2)).已知圖(1)中身高(單位:)內(nèi)的男生人數(shù)有16.

(Ⅰ)求在抽取的學(xué)生中,男女生各有多少人?

(Ⅱ)根據(jù)頻率分布直方圖,完成下列的列聯(lián)表,并判斷能有多大(百分之幾)的把握認為身高與性別有關(guān)”?

總計

男生人數(shù)

女生人數(shù)

總計

:參考公式和臨界值表:

,

5.024

6.635

7.879

10.828

0.025

0.010

0.005

0.001

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】19的九個數(shù)字中取三個偶數(shù)四個奇數(shù),試問:

1)能組成多少個沒有重復(fù)數(shù)字的七位數(shù)?

2)上述七位數(shù)中三個偶數(shù)排在一起的有幾個?

3)在(1)中的七位數(shù)中,偶數(shù)排在一起、奇數(shù)也排在一起的有幾個?

4)在(1)中任意兩偶數(shù)都不相鄰的七位數(shù)有幾個?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)若在點處的切線為,求的值;

(2)求的單調(diào)區(qū)間;

(3)若,求證:在時,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有如下問題:“今有芻甍,下廣三丈,袤四丈,上袤二丈,無廣,高二丈,問:積幾何?”其意思為:“今有底面為矩形的屋脊狀的鍥體,下底面寬3丈,長4丈,上棱長2丈,高2丈,問:它的體積是多少?”(已知1丈為10尺)該鍥體的三視圖如圖所示,則該鍥體的體積為( )

A. 12000立方尺B. 11000立方尺

C. 10000立方尺D. 9000立方尺

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E的左、右焦點分別為F1,F2,離心率為,點A在橢圓E上,∠F1AF260°,△F1AF2的面積為4.

(1)求橢圓E的方程;

(2)過原點O的兩條互相垂直的射線與橢圓E分別交于P,Q兩點,證明:點O到直線PQ的距離為定值,并求出這個定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某社區(qū)為了解居民參加體育鍛煉情況,隨機抽取18名男性居民,12名女性居民對他們參加體育鍛煉的情況進行問卷調(diào)查.現(xiàn)按參加體育鍛煉的情況將居民分成3類:甲類(不參加體育鍛煉),乙類(參加體育鍛煉,但平均每周參加體育鍛煉的時間不超過5個小時),丙類(參加體育鍛煉,且平均每周參加體育鍛煉的時間超過5個小時),調(diào)查結(jié)果如下表:

(1)根據(jù)表中的統(tǒng)計數(shù)據(jù),完成下面列聯(lián)表,并判斷是否有的把握認為參加體育鍛煉與否與性別有關(guān)?

(2)從抽出的女性居民中再隨機抽取2人進一步了解情況,求所抽取的2人中乙類,丙類各有1人的概率.

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,其中為自然對數(shù)的底數(shù).

(Ⅰ)當時,求曲線在點處的切線方程;

(Ⅱ)求函數(shù)的單調(diào)區(qū)間;

(Ⅲ)用表示,中的較大者,記函數(shù).若函數(shù)內(nèi)恰有2個零點,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案