已知奇函數(shù)f(x)=
x2-2x+2  (x<0)
ax2+bx+c (x>0)
(a,b,c∈R)
,則a+b+c的值是(  )
分析:利用函數(shù)的奇偶性確定a,b,c的取值范圍.然后求a+b+c.
解答:解:因?yàn)楹瘮?shù)f(x)是奇函數(shù),
所以設(shè)x<0,則-x>0,
所以f(-x)=ax2-bx+c=-(x2-2x+2)=-x2+2x-2,
所以a=-1,-b=2,c=-2,即a=-1,b=-2,c=-2.
所以a+b+c=-5.
故選A.
點(diǎn)評:本題主要考查函數(shù)奇偶性的應(yīng)用,要求熟練掌握函數(shù)奇偶性的定義和性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)=
-x2+2x(x>0)
0,(x=0)
x2+mx(x<0)

(1)求實(shí)數(shù)m的值,并在給出的直角坐標(biāo)系中畫出y=f(x)的圖象.
(2)若函數(shù)f(x)在區(qū)間[-1,|a|-2]上單調(diào)遞增,試確定a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)=
ax+b
x2+1
在(-1,1)上是增函數(shù),且f(
1
2
)=
2
5

①確定函數(shù)f(x)的解析式.
②解不等式f(t-1)+f(t)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)=
-x2+2x   (x>0)
0
                (x=0)
x2+mx
     (x<0)
,則m=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•杭州二模)已知奇函數(shù)f(x)=
qx+r
px2+1
有最大值
1
2
,且f(1)>
2
5
,其中實(shí)數(shù)x>0,p、q是正整數(shù)..
(1)求f(x)的解析式;
(2)令an=
1
f(n)
,證明an+1>an(n是正整數(shù)).

查看答案和解析>>

同步練習(xí)冊答案