【題目】已知函數(shù),過點(diǎn)作與軸平行的直線交函數(shù)的圖像于點(diǎn),過點(diǎn)作圖像的切線交軸于點(diǎn),則面積的最小值為____.
【答案】
【解析】
求出f(x)的導(dǎo)數(shù),令x=a,求得P的坐標(biāo),可得切線的斜率,運(yùn)用點(diǎn)斜式方程可得切線的方程,令y=0,可得B的坐標(biāo),再由三角形的面積公式可得△ABP面積S,求出導(dǎo)數(shù),利用導(dǎo)數(shù)求最值,即可得到所求值.
函數(shù)f(x)=的導(dǎo)數(shù)為f′(x),
由題意可令x=a,解得y,
可得P(a,),
即有切線的斜率為k,
切線的方程為y﹣(x),
令y=0,可得x=a﹣1,
即B( a﹣1,0),
在直角三角形PAB中,|AB|=1,|AP|,
則△ABP面積為S(a)|AB||AP|,a>0,
導(dǎo)數(shù)S′(a),
當(dāng)a>1時,S′>0,S(a)遞增;當(dāng)0<a<1時,S′<0,S(a)遞減.
即有a=1處S取得極小值,且為最小值e.
故答案為:e.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《中國詩詞大會》(第二季)亮點(diǎn)頗多,十場比賽每場都有一首特別設(shè)計(jì)的開場詩詞,在聲光舞美的配合下,百人團(tuán)齊聲朗誦,別有韻味.若《將進(jìn)酒》《山居秋暝》《望岳》《送杜少府之任蜀州》和另確定的兩首詩詞排在后六場,且《將進(jìn)酒》排在《望岳》的前面,《山居秋暝》與《送杜少府之任蜀州》不相鄰且均不排在最后,則后六場的排法有( )
A. 種 B. 種 C. 種 D. 種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,曲線由曲線和曲線組成,其中點(diǎn)為曲線所在圓錐曲線的焦點(diǎn),點(diǎn)為曲線所在圓錐曲線的焦點(diǎn).
(Ⅰ)若,求曲線的方程;
(Ⅱ)如圖,作直線平行于曲線的漸近線,交曲線于點(diǎn),求證:弦的中點(diǎn)必在曲線的另一條漸進(jìn)線上;
(Ⅲ)對于(Ⅰ)中的曲線,若直線過點(diǎn)交曲線于點(diǎn),求與面積之和的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠家舉行大型的促銷活動,經(jīng)測算,當(dāng)某產(chǎn)品促銷費(fèi)用為x(萬元)時,銷售量t(萬件)滿足(其中,).現(xiàn)假定產(chǎn)量與銷售量相等,已知生產(chǎn)該產(chǎn)品t萬件還需投入成本萬元(不含促銷費(fèi)用),產(chǎn)品的銷售價格定為元/件.
(1)將該產(chǎn)品的利潤y(萬元)表示為促銷費(fèi)用x(萬元)的函數(shù);
(2)促銷費(fèi)用投入多少萬元時,廠家的利潤最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)當(dāng)時,求函數(shù)的最大值;
(2)設(shè),求函數(shù)的最大值;
(3)已知,求函數(shù)的最大值;
(4)設(shè),且,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(I)若在處取得極值,求過點(diǎn)且與在處的切線平行的直線方程;
(II)當(dāng)函數(shù)有兩個極值點(diǎn),且時,總有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線(為參數(shù)),曲線(為參數(shù)).
(1)設(shè)與相交于兩點(diǎn),求;
(2)若把曲線上各點(diǎn)的橫坐標(biāo)壓縮為原來的倍,縱坐標(biāo)壓縮為原來的倍,得到曲線,設(shè)點(diǎn)是曲線上的一個動點(diǎn),求它到直線的距離的最大時,點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知且,函數(shù),.
(1)指出的單調(diào)性(不要求證明);
(2)若有求的值;
(3)若,求使不等式恒成立的的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com