【題目】如圖,四棱錐中,底面為矩形,側(cè)面為正三角形,且平面 平面, 為中點(diǎn), .
(Ⅰ)求證:平面平面;
(Ⅱ)若二面角的平面角大小滿足,求四棱錐的體積.
【答案】(Ⅰ)證明見解析;(Ⅱ) .
【解析】試題分析:(Ⅰ)由正三角形性質(zhì)可得,再利用面面垂直的性質(zhì)定理得平面,從而,則 ,由線面垂直的判定定理以及面面垂直的判定定理可得平面;(Ⅱ)建立空間直角坐標(biāo)系,令,求出平面的法向量以及平面的法向量,根據(jù)二面角的平面角大余弦值列方程求出,利用棱錐的體積公式可得結(jié)果.
試題解析:(Ⅰ)取中點(diǎn)為, 中點(diǎn)為,
由側(cè)面為正三角形,且平面平面知平面,故,
又,則平面,所以,
又,則,又是中點(diǎn),則,
由線面垂直的判定定理知平面,
又平面,故平面平面.
(Ⅱ)
如圖所示,建立空間直角坐標(biāo)系,
令,則.
由(Ⅰ)知為平面的法向量,
令為平面的法向量,
由于均與垂直,
故即解得
故,由 ,解得.
故四棱錐的體積.
【方法點(diǎn)晴】本題主要考查面面垂直的判定定理、利用空間向量求二面角以及棱錐的體積公式,屬于難題.空間向量解答立體幾何問題的一般步驟是:(1)觀察圖形,建立恰當(dāng)?shù)目臻g直角坐標(biāo)系;(2)寫出相應(yīng)點(diǎn)的坐標(biāo),求出相應(yīng)直線的方向向量;(3)設(shè)出相應(yīng)平面的法向量,利用兩直線垂直數(shù)量積為零列出方程組求出法向量;(4)將空間位置關(guān)系轉(zhuǎn)化為向量關(guān)系;(5)根據(jù)定理結(jié)論求出相應(yīng)的角和距離.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了得到函數(shù) 的圖象,只要將函數(shù)y=sin2x的圖象( )
A.向右平移 個(gè)單位長(zhǎng)度
B.向左平移 個(gè)單位長(zhǎng)度
C.向右平移 個(gè)單位長(zhǎng)度
D.向左平移 個(gè)單位長(zhǎng)度
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一塊半圓形空地,開發(fā)商計(jì)劃建一個(gè)矩形游泳池及其矩形附屬設(shè)施,并將剩余空地進(jìn)行綠化,園林局要求綠化面積應(yīng)最大化.其中半圓的圓心為,半徑為,矩形的一邊在直徑上,點(diǎn)、、、在圓周上,、在邊上,且,設(shè).
(1)記游泳池及其附屬設(shè)施的占地面積為,求的表達(dá)式;
(2)怎樣設(shè)計(jì)才能符合園林局的要求?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的定義域?yàn)?/span>,其中為常數(shù);
(1)若,且是奇函數(shù),求的值;
(2)若, ,函數(shù)的最小值是,求的最大值;
(3)若,在上存在個(gè)點(diǎn) ,滿足, ,
,使得,
求實(shí)數(shù)的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的離心率為,以橢圓長(zhǎng)、短軸四個(gè)端點(diǎn)為頂點(diǎn)為四邊形的面積為.
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖所示,記橢圓的左、右頂點(diǎn)分別為、,當(dāng)動(dòng)點(diǎn)在定直線上運(yùn)動(dòng)時(shí),直線分別交橢圓于兩點(diǎn)、,求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)F1 , F2為橢圓 的左右焦點(diǎn),若橢圓上存在點(diǎn)P使得 ,則此橢圓的離心率的取值范圍是( )
A.(0, )
B.(0, ]
C.( , ]
D.[ ,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的極小值為0.
(1)求實(shí)數(shù)的值;
(2)若不等式對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩位同學(xué)在5次考試中的數(shù)學(xué)成績(jī)用莖葉圖表示如圖,中間一列的數(shù)字表示數(shù)學(xué)成績(jī)的十位數(shù)字,兩邊的數(shù)字表示數(shù)學(xué)成績(jī)的個(gè)位數(shù)字,若甲、乙兩人的平均成績(jī)分別是 , ,則下列說法正確的是( )
A. ,甲比乙成績(jī)穩(wěn)定
B. ,乙比甲成績(jī)穩(wěn)定
C. ,甲比乙成績(jī)穩(wěn)定
D. ,乙比甲成績(jī)穩(wěn)定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓心為C的圓經(jīng)過O(0,0))和A(4,0)兩點(diǎn),線段OA的垂直平分線和圓C交于M,N兩點(diǎn),且|MN|=2
(1)求圓C的方程
(2)設(shè)點(diǎn)P在圓C上,試問使△POA的面積等于2的點(diǎn)P共有幾個(gè)?證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com