【題目】(Ⅰ)比較下列兩組實(shí)數(shù)的大小: ① ﹣1與2﹣ ;②2﹣
(Ⅱ)類比以上結(jié)論,寫(xiě)出一個(gè)更具一般意義的結(jié)論,并給出證明.

【答案】解:(Ⅰ)①( + 2﹣(2+1)2=2 ﹣4>0.

+ >2+1,即 ﹣1>2﹣

②(2+ 2﹣( + 2=4 ﹣2 =2 ﹣2 >0.

故2+ + ,即2﹣

(Ⅱ)由(Ⅰ)可得一般結(jié)論:若n是正整數(shù),則

證明如下:左﹣右=( )﹣( )= = >0,

則有


【解析】(Ⅰ)根據(jù)題意,對(duì)于①、②,將不等式的左右兩邊同時(shí)平方,再作差比較大小,即可得答案;(Ⅱ)由(Ⅰ)可得一般結(jié)論:若n是正整數(shù),則 ,利用作差法證明即可得證明.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了研究“教學(xué)方式”對(duì)教學(xué)質(zhì)量的影響,某高中數(shù)學(xué)老師分別用兩種不同的教學(xué)方式對(duì)入學(xué)數(shù)學(xué)平均分?jǐn)?shù)和優(yōu)秀率都相同的甲、乙兩個(gè)高一新班進(jìn)行教學(xué)(勤奮程度和自覺(jué)性都一樣).如圖所示莖葉圖為甲、乙兩班(每班均為20人)學(xué)生的數(shù)學(xué)期末考試成績(jī).
(1)現(xiàn)從甲班數(shù)學(xué)成績(jī)不低于80分的同學(xué)中隨機(jī)抽取兩名同學(xué),求成績(jī)?yōu)?7分的同學(xué)至少有一名被抽中的概率;
(2)學(xué)校規(guī)定:成績(jī)不低于75分的為優(yōu)秀.請(qǐng)?zhí)顚?xiě)下面的2×2表,并判斷有多大把握認(rèn)為“成績(jī)優(yōu)秀與教學(xué)方式有關(guān)”.

甲班

乙班

合計(jì)

優(yōu)秀

不優(yōu)秀

合計(jì)

下面臨界值表僅供參考:

P(x2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.79

10.828

(參考公式:x2=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】奇函數(shù)f(x)在(0,+∞)上為增函數(shù),且f(1)=0,則不等式 的解集為( )
A.(﹣1,0)∪(1,+∞)
B.(﹣∞,﹣1)∪(0,1)
C.(﹣∞,﹣1)∪(1,+∞)
D.(﹣1,0)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地方政府欲將一塊如圖所示的直角梯形ABCD空地改建為健身娛樂(lè)廣場(chǎng),已知AD∥BC,AD⊥AB,AD=2BC=2 百米,AB=3百米,廣場(chǎng)入口P在AB上,且AP=2BP,根據(jù)規(guī)劃,過(guò)點(diǎn)P鋪設(shè)兩條互相垂直的筆直小路PM、PN(小路寬度不計(jì)),點(diǎn)M、N分別在邊AD、BC上(包含端點(diǎn)),△PAM區(qū)域擬建為跳舞健身廣場(chǎng),△PBN區(qū)域擬建為兒童樂(lè)園,其他區(qū)域鋪設(shè)綠化草坪,設(shè)∠APM=θ.
(1)求綠化草坪面積的最大值;
(2)現(xiàn)擬將兩條小路PN、PN進(jìn)行不同風(fēng)格的美化,小路PM的美化費(fèi)用為每百米1萬(wàn)元,小路PN的美化費(fèi)用為每百米2萬(wàn)元,試確定點(diǎn)M,N的位置,使得小路PM,PN的總美化費(fèi)用最低,并求出最低費(fèi)用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方形ABCD的邊長(zhǎng)為2,若將正方形ABCD沿對(duì)角線BD折疊為三棱錐 ,則在折疊過(guò)程中,不能出現(xiàn)( )
A.
B.平面 平面CBD
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知g(x)是各項(xiàng)系數(shù)均為整數(shù)的多項(xiàng)式,f(x)=2x2﹣x+1,且滿足f(g(x))=2x4+4x3+13x2+11x+16,則g(x)的各項(xiàng)系數(shù)之和為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市出租車的現(xiàn)行計(jì)價(jià)標(biāo)準(zhǔn)是:路程在2 km以內(nèi)(含2 km)按起步價(jià)8元收取,超過(guò)2 km后的路程按1.9 元/km收取,但超過(guò)10 km后的路程需加收50%的返空費(fèi)(即單價(jià)為1.9×(1+50%)=2.85(元/km)).
(1)將某乘客搭乘一次出租車的費(fèi)用f(x)(單位:元)表示為行程x(0<x≤60,單位:km)的分段函數(shù);
(2)某乘客的行程為16 km,他準(zhǔn)備先乘一輛出租車行駛8 km后,再換乘另一輛出租車完成余下行程,請(qǐng)問(wèn):他這樣做是否比只乘一輛出租車完成全部行程更省錢?
(現(xiàn)實(shí)中要計(jì)等待時(shí)間且最終付費(fèi)取整數(shù),本題在計(jì)算時(shí)都不予考慮)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= ,若f(x)的圖象與直線y=kx有兩個(gè)不同的交點(diǎn),則實(shí)數(shù)k的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知全集U=R,集合A={x|x2+x>0},集合B= ,則(UA)∪B=(
A.[0,2)
B.[﹣1,0]
C.[﹣1,2)
D.(﹣∞,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案