在數(shù)列{an}中,anan+1=
1
2
,a1=1,則a98+a101=( 。
A、6
B、1
C、2
D、
3
2
考點(diǎn):數(shù)列遞推式
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:由已知條件利用遞推公式依次求出數(shù)列的前4項(xiàng),從而得到an=
1,n為奇數(shù)
1
2
,n為偶數(shù)
,由此能求出a98+a101
解答: 解:∵在數(shù)列{an}中,anan+1=
1
2
,a1=1,
an+1=
1
2an
,
a2=
1
2
,
a3=
1
1
2
=1,
a4=
1
2
,

an=
1,n為奇數(shù)
1
2
,n為偶數(shù)

∴a98+a101=
1
2
+1=
3
2

故選:D.
點(diǎn)評(píng):本題考查數(shù)列的兩項(xiàng)和的求法,是基礎(chǔ)題,解題時(shí)要注意遞推思想的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=x-lnx,x∈(0,1]的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinα+cosα=
3
5
.求:
(1)sinαcosα;
(2)sin3α+cos3α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)點(diǎn)P是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)上一點(diǎn),F(xiàn)1,F(xiàn)2分別是雙曲線的左、右焦點(diǎn),PF1⊥PF2,且|PF1|=3|PF2|,則雙曲線的離心率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在某地區(qū)的招聘考試中,一批畢業(yè)生全部參加了筆試和面試.成績(jī)各記為 A、B、C、D、E五個(gè)等級(jí),考生的考試成績(jī)數(shù)據(jù)統(tǒng)計(jì)如圖所示,其中筆試成績(jī)?yōu)?B的考生有10人.
(1)求這批考生中面試成績(jī)?yōu)?A的人數(shù);
(2)已知這批考生中只有甲、乙兩人筆試和面試成績(jī)均為 A.在筆試和面試成績(jī)至少一項(xiàng)為 A的考生中隨機(jī)抽取兩人進(jìn)行訪談,求這兩人恰為甲和乙的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

3
sinα+sin(
2
-α)=
1
2
,則sin(
π
6
+2α)
的值為(  )
A、
7
8
B、
1
8
C、
1
4
D、
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓x2+y2-2x=0與圓x2+y2+4y=0的公切線有
 
條.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)在等差數(shù)列{an}中,已知a1=20,前n項(xiàng)和為Sn,且S10=S15,求當(dāng)n取何值時(shí),Sn取得最大值,并求出它的最大值;
(2)已知數(shù)列{an}的通項(xiàng)公式是an=4n-25,求數(shù)列{|an|}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

C
5-x
9
+
C
6-x
9
=
C
2x
10
,則x的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案