10.已知冪函數(shù)f(x)=xα(α∈R),且$f(\frac{1}{2})=\frac{{\sqrt{2}}}{2}$.
(1)求函數(shù)f(x)的解析式;
(2)證明函數(shù)f(x)在定義域上是增函數(shù).

分析 (1)根據(jù)$f(\frac{1}{2})=\frac{{\sqrt{2}}}{2}$,求出函數(shù)的解析式即可;(2)根據(jù)函數(shù)單調(diào)性的定義證明即可.

解答 (1)解:由${({\frac{1}{2}})^α}=\frac{{\sqrt{2}}}{2}$得,$α=\frac{1}{2}$,
所以$f(x)=\sqrt{x}$;
(2)證明:定義域是[0,+∞),設(shè)任意的x2>x1≥0,
則$f({x_2})-f({x_1})=\sqrt{x_2}-\sqrt{x_1}=\frac{{{x_2}-{x_1}}}{{\sqrt{x_2}+\sqrt{x_1}}}$,
∵${x_2}-{x_1}>0,\sqrt{x_2}+\sqrt{x_1}>0$,
∴f(x2)>f(x1),
函數(shù)f(x)在定義域上是增函數(shù).

點(diǎn)評(píng) 本題考查了求冪函數(shù)的解析式問題,考查函數(shù)單調(diào)性的證明,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.過點(diǎn)P(2,1)的直線l與函數(shù)f(x)=$\frac{2x+3}{2x-4}$的圖象交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),則($\overrightarrow{OA}+\overrightarrow{OB}$)$•\overrightarrow{OP}$=( 。
A.$\sqrt{5}$B.2$\sqrt{5}$C.5D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知cosα-sinα=$\frac{3\sqrt{2}}{5}$(π<α<$\frac{3π}{2}$),則$\frac{sin2α(1+tanα)}{1-tanα}$=( 。
A.-$\frac{28}{75}$B.$\frac{28}{75}$C.-$\frac{56}{75}$D.$\frac{56}{75}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.“a=3”是“直線2x+ay+1=0和直線(a-1)x+3y-2=0平行”的充分不必要條件.(填“充要”,“充分不必要”,“必要不充分”,“既不充分也不必要”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知Sn是數(shù)列{an}的前n項(xiàng)和,且${a_1}=1,{a_{n+1}}+{a_n}={2^{n+1}}(n∈{N^*})$
(Ⅰ)求證:$\left\{{{a_n}-\frac{{{2^{n+1}}}}{3}}\right\}$是等比數(shù)列,并求{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=3nan,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗實(shí)線畫出的某多面體的三視圖,則該多面體的體積為( 。
A.8B.$\frac{4}{3}$C.$\frac{8}{3}$D.$\frac{10}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若a∈R+,則當(dāng)a+$\frac{1}{9a}$的最小值為m時(shí),不等式m${\;}^{{x}^{2}+4x+3}$<1的解集為{x|x<-3或x>-1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.三棱柱ABC-A1B1C1中,AA1與AC、AB所成角均為60°,∠BAC=90°,且AB=AC=AA1,則A1B與AC1所成角的正弦值為(  )
A.1B.$\frac{1}{3}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.邊長(zhǎng)為a的正三角形ABC的邊AB、AC的中點(diǎn)為E、F,將△AEF沿EF折起,此時(shí)A點(diǎn)的新位置A'使平面A'EF⊥平面BCFE,則A'B=$\frac{\sqrt{10}a}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案