【題目】設函數.
(1)討論的單調性;
(2)若有兩個極值點和,記過點,的直線的斜率為,問:是否存在,使得?若存在,求出的值;若不存在,請說明理由.
【答案】(1)見解析;(2)不存在
【解析】分析:(1)求得導函數,判斷二次方程的根的情況得出=0的解及在上的正負值變化,從而得單調性;
(2)假設存在,由(1)知,先表示出化簡為,從而,再由消元,(),設出新函數,通過導數研究出此方程無解,因此得不存在.
詳解: (1)f(x)的定義域為(0,+∞),f′(x)=1+-=.
令g(x)=x2-ax+1,則方程x2-ax+1=0的判別式Δ=a2-4.
①當|a|≤2時,Δ≤0,f′(x)≥0,故f(x)在(0,+∞)上單調遞增.
②當a<-2時,Δ>0,g(x)=0的兩根都小于0,在(0,+∞)上恒有f′(x)>0,
故f(x)在(0,+∞)上單調遞增.
③當a>2時,Δ>0,g(x)=0的兩根為x1=,x2=,
當0<x<x1時,f′(x)>0;當x1<x<x2時,f′(x)<0;當x>x2時,f′(x)>0,
故f(x)在(0,x1),(x2,+∞)上單調遞增,在(x1,x2)上單調遞減.
(2)由(1)知,a>2.
因為f(x1)-f(x2)=(x1-x2)+-a(ln x1-ln x2),
所以k==1+-a·.
又由(1)知,x1x2=1.于是k=2-a·.
若存在a,使得k=2-a.則=1.
即ln x1-ln x2=x1-x2.
亦即x2--2ln x2=0(x2>1). (*)
再由(1)知,函數h(t)=t--2ln t在(0,+∞)上單調遞增,而x2>1,
所以x2--2ln x2>1--2ln 1=0.這與(*)式矛盾.
故不存在a,使得k=2-a.
科目:高中數學 來源: 題型:
【題目】為了研究某藥品的療效,選取若干名志愿者進行臨床試驗,所有志愿者的舒張壓數據(單位:kPa)的分組區(qū)間為[12,13),[13,14),[14,15),[15,16),[16,17],將其按從左到右的順序分別編號為第一組,第二組,,第五組,右圖是根據試驗數據制成的頻率分布直方圖,已知第一組與第二組共有20人,第三組中沒有療效的有6人,則第三組中有療效的人數為( )
A. 6 B. 8 C. 12 D. 18
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知直線的參數方程為(為參數).以坐標原點為極點,以坐標原點為極點,軸的非負半軸為極軸,取相同的長度單位建立極坐標系,曲線的極坐標方程為.
(Ⅰ)求直線的普通方程和曲線的直角坐標方程;
(Ⅱ)若曲線上的點到直線的最大距離為6,求實數的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,ABCD為直角梯形,∠C=∠CDA=90°,AD=2BC=2CD=2,P為平面ABCD外一點,且PB⊥BD.
(1)求證:PA⊥BD;
(2)若直線l過點P,且直線l∥直線BC,試在直線l上找一點E,使得直線PC∥平面EBD;
(3)若PC⊥CD,PB=4,求四棱錐P﹣ABCD的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C方程:+=1(a>b>0),M(x0 , y0)是橢圓C上任意一點,F(xiàn)(c,0)是橢圓的右焦點.
(1)若橢圓的離心率為e,證明|MF|=a﹣ex0;
(2)已知不過焦點F的直線l與圓x2+y2=b2相切于點Q,并與橢圓C交于A,B兩點,且A,B兩點都在y軸的右側,若a=2,求△ABF的周長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】世界那么大,我想去看看,處在具有時尚文化代表的大學生們旅游動機強烈,旅游可支配收入日益增多,可見大學生旅游是一個巨大的市場.為了解大學生每年旅游消費支出(單位:百元)的情況,相關部門隨機抽取了某大學的名學生進行問卷調查,并把所得數據列成如下所示的頻數分布表:
組別 | |||||
頻數 |
(Ⅰ)求所得樣本的中位數(精確到百元);
(Ⅱ)根據樣本數據,可近似地認為學生的旅游費用支出服從正態(tài)分布,若該所大學共有學生人,試估計有多少位同學旅游費用支出在元以上;
(Ⅲ)已知樣本數據中旅游費用支出在范圍內的名學生中有名女生, 名男生,現(xiàn)想選其中名學生回訪,記選出的男生人數為,求的分布列與數學期望.
附:若,則,
, .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某高校共有15000人,其中男生10500人,女生4500人,為調查該校學生每周平均體育運動時間的情況,采用分層抽樣的方法,收集300位學生每周平均體育運動時間的樣本數據(單位:小時)
(1)應收集多少位女生樣本數據?
(2)根據這300個樣本數據,得到學生每周平均體育運動時間的頻率分布直方圖(如圖所示),其中樣本數據分組區(qū)間為:.估計該校學生每周平均體育運動時間超過4個小時的概率.
(3)在樣本數據中,有60位女生的每周平均體育運動時間超過4個小時.請完成每周平均體育運動時間與性別的列聯(lián)表,并判斷是否有的把握認為“該校學生的每周平均體育運動時間與性別有關”.
附:
0.10 | 0.05 | 0.010 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,某住宅小區(qū)的平面圖呈圓心角為的扇形,小區(qū)的兩個出入口設置在點及點處,且小區(qū)里有一條平行于的小路。
(1)已知某人從沿走到用了分鐘,從沿走到用了分鐘,若此人步行的速度為每分鐘米,求該扇形的半徑的長(精確到米)
(2)若該扇形的半徑為,已知某老人散步,從沿走到,再從沿走到,試確定的位置,使老人散步路線最長。
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com