考點:導(dǎo)數(shù)的運算
專題:函數(shù)的性質(zhì)及應(yīng)用,三角函數(shù)的求值
分析:由函數(shù)f
1(x),求出f
2(x)、f
3(x)、f
4(x)、f
5(x),…,得出f
n(x)是以4為周期的函數(shù),從而求出f
1(
)+f
2(
)+…+f
2014(
)的值.
解答:
解:∵函數(shù)f
1(x)=sinx+cosx,
∴f
2(x)=
f1′(x)=cosx-sinx;
∴f
3(x)=
f2′(x)=-sinx-cosx,f
4(x)=
f3′(x)=-cosx+sinx;
f
5(x)=
f4′(x)=sinx+cosx,…;
∴f
n是以4為周期變化,
∴f
1(
)=sin
+cos
=1,f
2(
)=cos
-sin
=-1,
f
3(
)=-sin
-cos
=-1,f
4(
)=-cos
+sin
=1,…;
∴f
1(
)+f
2(
)+…+f
2014(
)=1+(-1)+(-1)+1+…+(-1)=0.
故選:B.
點評:本題考查了導(dǎo)數(shù)的運算以及三角函數(shù)的應(yīng)用問題,解題時應(yīng)考查函數(shù)fn(x)的周期性,總結(jié)規(guī)律,求出正確的答案.