在一次語文測(cè)試中,有一道把四本名著與它們的作者連線的題目(每本書連且只能連一位作者),每連對(duì)一個(gè)得3分,連錯(cuò)不得分,則某考生該題得分為3分的概率為( 。
A、
3
8
B、
1
3
C、
1
6
D、
1
12
考點(diǎn):等可能事件的概率
專題:概率與統(tǒng)計(jì)
分析:把四本名著與它們的作者連線,該考生共有A44種連線方法,而該考生得3分的連線方法共有
C
1
4
×2=8種情況,由此求得該考生該題得分為3分的概率.
解答: 解:把四本名著與它們的作者連線,該考生共有A44種連線方法,
而該考生得3分,即僅連對(duì)1個(gè)、練錯(cuò)了3個(gè),共有
C
1
4
×2=8種情況,
某考生該題得分為3分的概率為 
8
A
4
4
=
1
3
,
故選:B.
點(diǎn)評(píng):本題考查等可能事件的概率,關(guān)鍵是根據(jù)題意,分析出該觀眾所得的分?jǐn)?shù)與其連線的結(jié)果的對(duì)應(yīng)關(guān)系,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ex-x-2,用二分法求方程ex-x-2=0在區(qū)間(-1,3)內(nèi)的近似解的過程中得到f(-1)<0,f(0)<0,f(1)<0,f(2)>0,f(3)>0,則方程至少有一個(gè)根落在( 。
A、(-1,0)
B、(0,1)
C、(1,2)
D、(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某化肥廠甲、乙兩個(gè)車間包裝肥料,在自動(dòng)包裝傳送帶上每隔30分鐘抽取一包產(chǎn)品,稱其重量,分別記錄抽查數(shù)據(jù)如下:
102 101 99 98 103 98 99
110 115 90 85 75 115 110
(1)這種抽樣方法是哪一種?
(2)將兩組數(shù)據(jù)用莖葉圖表示.
(3)將兩組數(shù)據(jù)進(jìn)行比較,說明哪個(gè)車間產(chǎn)品較穩(wěn)定.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,角A,B,C所對(duì)應(yīng)的邊分別為a,b,c.若acosB-bcosA=c,則△ABC是
 
三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正方體ABCD-A1B1C1D1的棱長(zhǎng)是1,則直線DA1與平面ACB1間的距離為( 。
A、
3
3
B、
6
3
C、
2
3
D、
2
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系中,直線x+
3
y-3=0的斜率是(  )
A、
3
3
B、
3
C、-
3
3
D、-
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

空間中過點(diǎn)A(-2,1,3),且與xOy坐標(biāo)平面垂直的直線上的點(diǎn)的坐標(biāo)滿足(  )
A、x=-2
B、y=1
C、x=-2或y=1
D、x=-2且y=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1,l2方程分別為2x-y=0,x-2y+3=0,且l1,l2的交點(diǎn)為P.
(1)求P點(diǎn)坐標(biāo);
(2)若直線l過點(diǎn)P,且到坐標(biāo)原點(diǎn)的距離為1,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x≤2},B={x|x(x-3)<0},則A∩B=(  )
A、{x|0<x≤2}
B、{x|x<0}
C、{x|x≤2,或x>3}
D、{x|x<0,或x≥2}

查看答案和解析>>

同步練習(xí)冊(cè)答案