已知函數(shù)f(x)的定義域[-1,5],部分對(duì)應(yīng)值如表
x -1 0 4 5
f(x) 1 2 2 1
f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示
下列關(guān)于函數(shù)f(x)的命題;
①函數(shù)f(x)的值域?yàn)閇1,2];
②函數(shù)f(x)在[0,2]上是減函數(shù);
③如果當(dāng)x∈[-1,t]時(shí),f(x)的最大值是2,那么t的最大值為4;
④當(dāng)1<a<2時(shí),函數(shù)y=f(x)-a有4個(gè)零點(diǎn).
其中真命題為
(填寫序號(hào))
分析:觀察函數(shù)y=f′(x)的圖象知:求出極值點(diǎn),比較端點(diǎn)值,可以求出值域;在區(qū)間[-1,0)和(2,4)內(nèi),f′(x)>0,在(0,2)上是減函數(shù),由此能求出f(x)的單調(diào)遞增區(qū)間;結(jié)合函數(shù)的圖象和表格知:函數(shù)f(x)的定義域[-1,5]內(nèi),在x=0處取極大值f(0)=2,在x=2處取極小值f(2),在x=4處取極大值f(4)=2,再由f(-1)=1.f(5)=1,由此即可求出f(x)的最值;根據(jù)函數(shù)的單調(diào)性求出了f(x)的值域y=f(x)-a有零點(diǎn),得f(x)=a,根據(jù)a的范圍進(jìn)行判斷;
解答:解:∵f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示:
觀察圖象知:在區(qū)間[-1,0)和(2,4)內(nèi),f′(x)>0,f(x)的單調(diào)遞增區(qū)間是[-1,0]和[2,4];

在(0,2)和(4,5)有f′(x)>0,f(x)為減函數(shù);
故②正確;
兩個(gè)極大值點(diǎn):
結(jié)合函數(shù)的圖象知:函數(shù)f(x)的定義域[-1,5]內(nèi),
在x=0處取極大值f(0)=2,
在x=2處取極小值f(2),
在x=4處取極大值f(4)=2,
又∵f(-1)=1.f(5)=1,
∴f(x)的最大值是2.最小值為f(2),故①錯(cuò)誤;
當(dāng)x∈[-1,t]時(shí),f(x)的最大值是2,那么t的最大值為:t=5,故③錯(cuò)誤;
求函數(shù)y=f(x)-a的零點(diǎn):可得f(x)=a,因?yàn)椴恢钚≈档闹,無(wú)法進(jìn)行判斷,故④錯(cuò)誤;
故答案為②;
點(diǎn)評(píng):本題考查函數(shù)的單調(diào)區(qū)間和極大值的求法,解題時(shí)要認(rèn)真審題,仔細(xì)觀察圖象,熟練掌握導(dǎo)數(shù)的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log3
3
x
1-x
,M(x1,y1),N(x2,y2)
是f(x)圖象上的兩點(diǎn),橫坐標(biāo)為
1
2
的點(diǎn)P滿足2
OP
=
OM
+
ON
(O為坐標(biāo)原點(diǎn)).
(Ⅰ)求證:y1+y2為定值;
(Ⅱ)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*,且n≥2,求Sn;
(Ⅲ)已知an=
1
6
,                          n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn為數(shù)列{an}的前n項(xiàng)和,若Tn<m(Sn+1+1)對(duì)一切n∈N*都成立,試求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法正確的有(  )個(gè).
①已知函數(shù)f(x)在(a,b)內(nèi)可導(dǎo),若f(x)在(a,b)內(nèi)單調(diào)遞增,則對(duì)任意的?x∈(a,b),有f′(x)>0.
②函數(shù)f(x)圖象在點(diǎn)P處的切線存在,則函數(shù)f(x)在點(diǎn)P處的導(dǎo)數(shù)存在;反之若函數(shù)f(x)在點(diǎn)P處的導(dǎo)數(shù)存在,則函數(shù)f(x)圖象在點(diǎn)P處的切線存在.
③因?yàn)?>2,所以3+i>2+i,其中i為虛數(shù)單位.
④定積分定義可以分為:分割、近似代替、求和、取極限四步,對(duì)求和In=
n
i=1
f(ξi)△x
中ξi的選取是任意的,且In僅于n有關(guān).
⑤已知2i-3是方程2x2+px+q=0的一個(gè)根,則實(shí)數(shù)p,q的值分別是12,26.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直線y=m與兩個(gè)相鄰函數(shù)的交點(diǎn)為A,B,若m變化時(shí),AB的長(zhǎng)度是一個(gè)定值,則AB的值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(Ⅰ)已知函數(shù)f(x)=x3-x,其圖象記為曲線C.
(i)求函數(shù)f(x)的單調(diào)區(qū)間;
(ii)證明:若對(duì)于任意非零實(shí)數(shù)x1,曲線C與其在點(diǎn)P1(x1,f(x1))處的切線交于另一點(diǎn)P2(x2,f(x2)),曲線C與其在點(diǎn)P2(x2,f(x2))處的切線交于另一點(diǎn)P3(x3,f(x3)),線段P1P2,P2P3與曲線C所圍成封閉圖形的面積記為S1,S2.則
S1S2
為定值;
(Ⅱ)對(duì)于一般的三次函數(shù)g(x)=ax3+bx2+cx+d(a≠0),請(qǐng)給出類似于(Ⅰ)(ii)的正確命題,并予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3-ax+b存在極值點(diǎn).
(1)求a的取值范圍;
(2)過(guò)曲線y=f(x)外的點(diǎn)P(1,0)作曲線y=f(x)的切線,所作切線恰有兩條,切點(diǎn)分別為A、B.
(。┳C明:a=b;
(ⅱ)請(qǐng)問(wèn)△PAB的面積是否為定值?若是,求此定值;若不是求出面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案