【題目】如圖,在四棱錐中,平面
平面
,
,
,
,
,
為
的中點(diǎn).
()求證:
.
()求證:平面
平面
.
()在平面
內(nèi)是否存在
,使得直線
平面
,請(qǐng)說明理由.
【答案】(1)見解析;(2)見解析;(3)見解析
【解析】試題分析:
(1)由平面平面
,可得
平面
,故證得
.(2)先證明四邊形
是正方形,連結(jié)
,則
.又可證得四邊形
是平行四邊形,故
,可得
.根據(jù)(1)得
平面
,故
,從而可得
平面
,故平面
平面
.(3)當(dāng)
為直線
的交點(diǎn)時(shí),滿足
平面
,根據(jù)線面平行的判定定理可證明.
試題解析:
()證明:∵平面
平面
,平面
平面
,
,
∴平面
,
又平面
,
∴.
()由已知,
,且
,
∴四邊形是平行四邊形,
又,
,
∴四邊形是正方形,
連結(jié),則
,
又,
,
∴四邊形是平行四邊形,
∴,
∴,
由()知
平面
,
平面
,
∴,
又,
∴平面
,
∵平面
,
∴平面平面
.
(3)當(dāng)為直線
的交點(diǎn)時(shí),有
平面
.
理由如下:
在四邊形中,
,
,
∴四邊形為梯形,
∴必定相交,設(shè)交點(diǎn)為
.
由(2)知四邊形是正方形,
∴,
又
平面
,
平面
,
∴平面
.
故平面內(nèi)存在
,使得直線
平面
,且
為直線
的交點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知{an}是各項(xiàng)均為正數(shù)的等比數(shù)列,且a1+a2=6,a1a2=a3.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2){bn}為各項(xiàng)非零的等差數(shù)列,其前n項(xiàng)和為Sn.已知S2n+1=bnbn+1,求數(shù)列{}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)等差數(shù)列的前
項(xiàng)和為
,且
(
是常數(shù),
),
.
(1)求的值及數(shù)列
的通項(xiàng)公式;
(2)設(shè),數(shù)列
的前
項(xiàng)和為
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題:關(guān)于
的不等式
無(wú)解;命題
:指數(shù)函數(shù)
是增函數(shù).
(1)若命題為真命題,求
的取值范圍;
(2)若滿足為假命題
為真命題的實(shí)數(shù)
取值范圍是集合
,集合
,且
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知以點(diǎn)A(m, )(m∈R且m>0)為圓心的圓與x軸相交于O,B兩點(diǎn),與y軸相交于O,C兩點(diǎn),其中O為坐標(biāo)原點(diǎn).
(1)當(dāng)m=2時(shí),求圓A的標(biāo)準(zhǔn)方程;
(2)當(dāng)m變化時(shí),△OBC的面積是否為定值?若是,請(qǐng)求出該定值;若不是,請(qǐng)說明理由;
(3)設(shè)直線與圓A相交于P,Q兩點(diǎn),且 |OP|=|OQ|,求 |PQ| 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)指出的周期、振幅、初相、對(duì)稱軸并寫出該函數(shù)的單調(diào)增區(qū)間;
(2)說明此函數(shù)圖象可由,
上的圖象經(jīng)怎樣的變換得到.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合,其中
,
,
.
表示
中所有不同值的個(gè)數(shù).
()設(shè)集合
,
,分別求
和
.
()若集合
,求證:
.
()
是否存在最小值?若存在,求出這個(gè)最小值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax+b,x∈[-1,1],a,b∈R,且是常數(shù).
(1)若a是從-2,-1,0,1,2五個(gè)數(shù)中任取的一個(gè)數(shù),b是從0,1,2三個(gè)數(shù)中任取的一個(gè)數(shù),求函數(shù)y=f(x)為奇函數(shù)的概率;
(2)若a是從區(qū)間[-2,2]中任取的一個(gè)數(shù),b是從區(qū)間[0,2]中任取的一個(gè)數(shù),求函數(shù)y=f(x)有零點(diǎn)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】光對(duì)物體的照度與光的強(qiáng)度成正比,比例系數(shù)為,與光源距離的平方成反比,比例系數(shù)為
均為正常數(shù)
如圖,強(qiáng)度分別為8,1的兩個(gè)光源A,B之間的距離為10,物體P在連結(jié)兩光源的線段AB上
不含A,
若物體P到光源A的距離為x.
試將物體P受到A,B兩光源的總照度y表示為x的函數(shù),并指明其定義域;
當(dāng)物體P在線段AB上何處時(shí),可使物體P受到A,B兩光源的總照度最��?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com