銳角三角形ABC的內(nèi)角A,B,C的對邊分別為a,b,c,a=2bsinA,則cosA+sinC的取值范圍是
 
考點(diǎn):余弦定理
專題:三角函數(shù)的求值
分析:已知等式利用正弦定理化簡,根據(jù)sinA不為0求出sinB的值,確定出B的度數(shù),進(jìn)而表示出A+C的度數(shù),用A表示出C,代入所求式子利用兩角和與差的正弦函數(shù)公式化簡,整理后再利用兩角和與差的正弦函數(shù)公式化為一個(gè)角的正弦函數(shù),由A的范圍求出這個(gè)角的范圍,利用正弦函數(shù)的值域確定出范圍即可.
解答: 解:已知等式a=2bsinA利用正弦定理化簡得:sinA=2sinBsinA,
∵sinA≠0,
∴sinB=
1
2
,
∵B為銳角,
∴B=30°,即A+C=150°,
∴cosA+sinC=cosA+sin(150°-A)=cosA+
1
2
cosA+
3
2
sinA=
3
2
cosA+
3
2
sinA=
3
3
2
cosA+
1
2
sinA)=
3
sin(A+60°),
∵60°<A<90°,∴120°<A+60°<150°,
1
2
<sin(A+60°)<
3
2
,即
3
2
3
sin(A+60°)<
3
2
,
則cosA+sinC的取值范圍是(
3
2
,
3
2
).
故答案為:(
3
2
,
3
2
).
點(diǎn)評:此題考查了正弦定理,以及兩角和與差的正弦函數(shù)公式,正弦函數(shù)的定義域與值域,熟練掌握公式是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ex-t(x+1).
(1)若f(x)≥0對一切正實(shí)數(shù)x恒成立,求t的取值范圍;
(2)設(shè)g(x)=f(x)+
t
ex
,且A(x1,y1)、B(x2,y2)(x1≠x2)是曲線y=g(x)上任意兩點(diǎn),若對任意的t≤-1,直線AB的斜率恒大于常數(shù)m,求m的取值范圍;
(3)求證:1n+2n+…+(n-1)n≤nn(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列數(shù)組:(1),(1,2),(1,2,1),(1,2,1,2),(1,2,1,2,1),(1,2,1,2,1,2),…按照此規(guī)律進(jìn)行下去.記第n個(gè)中各數(shù)的和為f(n)(n∈N*),則f(n)+f(n+1)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題:
①設(shè)z1,z2,z3∈C,若(z1-z22+(z2-z32=0,則z1=z3;
②兩個(gè)復(fù)數(shù)不能比較大小;
③若z∈C則z-
z
是純虛數(shù);
④設(shè)z1,z2∈C,則“z1+z2∈R”是“z1與z2互為共軛復(fù)數(shù)”的必要不充分條件.
其中,真命題的序號為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)過點(diǎn)(-2,3),傾斜角是直線3x+4y-5=0傾斜角一半的直線的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在使f(x)≥M成立的所有常數(shù)M中,把M的最大值叫做f(x)的“下確界”,例如f(x)=x2+2x≥M,則Mmax=-1,故-1是f(x)=x2+2x的下確界,那么
a2+b2
(a+b)2
(其中a,b∈R,且a,b不全為0)的下確界是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)l,m表示兩條不同的直線,α、β表示兩個(gè)不同的平面,下列命題中真命題是( 。
A、若l?α,m∥α,則l∥m
B、若l?α,l∥m,則m∥α
C、若m∥α,m⊥β,則α⊥β
D、若m∥α,α⊥β,則m∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)=2x+cosx在(-∞,+∞)上( 。
A、是增函數(shù)B、是減函數(shù)
C、有最大值D、有最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x0是函數(shù)f(x)=(
1
2
x-x 
1
3
的零點(diǎn),則x0屬于區(qū)間( 。
A、(-1,0)
B、(0,1)
C、(1,2)
D、(2,3)

查看答案和解析>>

同步練習(xí)冊答案