函數(shù)f(x)=x2-
1
x
的值域是
 
考點:函數(shù)的值域
專題:函數(shù)的性質(zhì)及應用
分析:求函數(shù)f(x)的導數(shù)f,(x),根據(jù)導數(shù)的正負性來決定函數(shù)的單調(diào)性,求出函數(shù)的最值,從而得到函數(shù)的值域.
解答: 解:∵函數(shù)f(x)=x2-
1
x
,x≠0,
∴f′(x)=2x+
1
x2
=
2x3+1
x2

當x>0時,f′(x)>0,
∴f(x)是增函數(shù),
∴f(x)∈R;
當x<0時,
若x=-
34
2
,則f′(x)=0,
∴x<-
34
2
時,f′(x)<0,f(x)是減函數(shù);
-
34
2
<x<0時,f′(x)>0,f(x)是增函數(shù);
函數(shù)有最小值f(-
34
2
)=
3
32
2
;
∴f(x)≥
3
32
2
;
綜上,f(x)的值域是R;
故答案為:R.
點評:本題考查了利用導數(shù)求函數(shù)值域的問題,解題時應根據(jù)導數(shù)的正負性來決定函數(shù)的單調(diào)性,從而求出值域.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設z=2y-2x+4,式中x,y滿足條件
0≤x≤1
0≤y≤2
2y-x≥1
,求z的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合M是滿足下列條件的函數(shù)f(x)的全體:
(1)f(x)既不是奇函數(shù)也不是偶函數(shù);(2)函數(shù)f(x)有零點.那么在函數(shù)
①f(x)=|x|-1,②f(x)=2x-1,③f(x)=
x-2,x>0
0,x=0
x+2,x<0

④f(x)=x2-x-1+lnx中,
屬于M的有
 
.(寫出所有符合的函數(shù)序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A、B、C為直線l上不同的三點,點O∉直線l,實數(shù)x滿足關系式x2
OA
+2x
OB
+
OC
=
0
,有下列命題:
OB
2
-
OC
OA
≥0;        
OB
2
-
OC
OA
<0;
③x的值有且只有一個;      
④x的值有兩個;
⑤點B是線段AC的中點.
則正確的命題是
 
.(寫出所有正確命題的編號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

①?φ∈R,函數(shù)f(x)=sin(2x+φ)都不是偶函數(shù);
②函數(shù)f(x)=ex+x2-2的零點有2個; 
③已知函數(shù)y=f(x)和函數(shù)y=log2(x+1)的圖象關于直線x-y=0 對稱,則函數(shù)y=f(x)的解析式為y=2x-1;
④?m∈R,使f(x)=(m-1)•xm2-4m+3是冪函數(shù),且在(0,+∞)上遞減;
上述命題中是真命題的有
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有標號分別為1,2,3的紅色卡片3張,標號分別為1,2,3的藍色卡片3張,現(xiàn)將全部的6張卡片放在2行3列的格內(nèi)(如圖).若顏色相同的卡片在同一行,則不同的放法種數(shù)為
 
.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題:
①當?x>1時,lgx+
1
lgx
≥2;
②m+1>n是m>n成立的充分不必要條件;
③對于任意△ABC的內(nèi)角A、B、C滿足:sin2A=sin2B+sin2C-2sinBsinCcosA;
④定義:如果對任意一個三角形,只要它的三邊長a、b、c都在函數(shù)y=f(x)的定義域內(nèi),就有f(a)、f(b)、f(c)也是某個三角形的三邊長,則稱y=f(x)為“三角形型函數(shù)”.函數(shù)h(x)=lnx,x∈[2,+∞)是“三角形型函數(shù)”.
其中正確命題的序號為
 
.(填上所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設實數(shù)x,y滿足
(2x-y+2)(4x-y-2)≤0
0≤x≤2,y≥0
,若目標函數(shù)z=
m
n
x+y(m>0,n>0)的最大值為10,則2m+
1
n
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設變量x,y滿足約束條件
3x+y-6≥0
x-y-2≤0
y-3≤0
,且目標函數(shù)z=y+ax的最小值為-7,則a的值為( 。
A、-2B、-4C、-1D、1

查看答案和解析>>

同步練習冊答案