【題目】已知函數(shù),為自然對(duì)數(shù)的底數(shù),).

(1)判斷曲線在點(diǎn)處的切線與曲線的公共點(diǎn)個(gè)數(shù);

(2)當(dāng)時(shí),若函數(shù)有兩個(gè)零點(diǎn),求的取值范圍.

【答案】(1)見解析(2)

【解析】分析:(1)根據(jù)導(dǎo)數(shù)的幾何意義可得切線方程,然后根據(jù)切線方程與聯(lián)立得到的方程組的解的個(gè)數(shù)可得結(jié)論.(2)由題意求得的解析式,然后通過分離參數(shù),并結(jié)合函數(shù)的圖象可得所求的范圍

詳解:(1)∵,

,

.

,

∴曲線在點(diǎn)處的切線方程為

.

所以當(dāng),即時(shí),切線與曲線有兩個(gè)公共點(diǎn);

當(dāng),即時(shí),切線與曲線有一個(gè)公共點(diǎn);

當(dāng),即時(shí),切線與曲線沒有公共點(diǎn).

(2)由題意得,

,得,

設(shè)

.

,

所以當(dāng)時(shí),單調(diào)遞減;

當(dāng)時(shí),單調(diào)遞增.

所以.

,,

結(jié)合函數(shù)圖象可得,當(dāng)時(shí),方程有兩個(gè)不同的實(shí)數(shù)根,

故當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的參數(shù)方程為:為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線與曲線交于,兩點(diǎn).

(1)求直線的普通方程和曲線的直角坐標(biāo)方程;

(2)若點(diǎn)的極坐標(biāo)為,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ln(2ax+1)+ ﹣x2﹣2ax(a∈R).
(1)若x=2為f(x)的極值點(diǎn),求實(shí)數(shù)a的值;
(2)若y=f(x)在[3,+∞)上為增函數(shù),求實(shí)數(shù)a的取值范圍;
(3)當(dāng)a=﹣ 時(shí),方程f(1﹣x)= 有實(shí)根,求實(shí)數(shù)b的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),是函數(shù)的圖象與軸的個(gè)相鄰交點(diǎn)的橫坐標(biāo),且當(dāng)時(shí),取得最大值.

(1)求數(shù)的表達(dá)式;

(2)將函數(shù)的圖象上的每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>倍(縱坐標(biāo)不變),得到函數(shù)的圖象,再將函數(shù)的圖象向右平移個(gè)單位,得到函數(shù)的圖象.

①求函數(shù)的解析式;

②求函數(shù)在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱柱ABC﹣A1B1C1中,已知側(cè)面ABB1A1是菱形,側(cè)面BCC1B1是正方形,點(diǎn)A1在底面ABC的投影為AB的中點(diǎn)D.
(1)證明:平面AA1B1B⊥平面BB1C1C;
(2)設(shè)P為B1C1上一點(diǎn),且 ,求二面角A1﹣AB﹣P的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“微信運(yùn)動(dòng)”已成為當(dāng)下熱門的健身方式,小明的微信朋友圈內(nèi)也有大量好友參與了“微信運(yùn)動(dòng)”,他隨機(jī)選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:

0~2000

2001~5000

5001~8000

8001~10000

1

2

3

6

8

0

2

10

6

2

(1)若采用樣本估計(jì)總體的方式,試估計(jì)小明的所有微信好友中每日走路步數(shù)超過5000步的概率;

(2)已知某人一天的走路步數(shù)超過8000步時(shí)被系統(tǒng)評(píng)定為“積極型”,否則為“懈怠型”.根據(jù)小明的統(tǒng)計(jì)完成下面的列聯(lián)表,并據(jù)此判斷是否有以上的把握認(rèn)為“評(píng)定類型”與“性別”有關(guān)?

積極型

懈怠型

總計(jì)

總計(jì)

附:

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】抽樣統(tǒng)計(jì)甲、乙兩名學(xué)生的5次訓(xùn)練成績(jī)(單位:分),結(jié)果如下:

學(xué)生

第1次

第2次

第3次

第4次

第5次

65

80

70

85

75

80

70

75

80

70

則成績(jī)較為穩(wěn)定(方差較。┑哪俏粚W(xué)生成績(jī)的方差為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某公司為鄭州園博園生產(chǎn)某特許商品,該公司年固定成本為10萬元,每生產(chǎn)千件需另投入2 .7萬元,設(shè)該公司年內(nèi)共生產(chǎn)該特許商品工x千件并全部銷售完;每千件的銷售收入為R(x)萬元,

,

(I)寫出年利潤(rùn)W(萬元〉關(guān)于該特許商品x(千件)的函數(shù)解析式;

〔II〕年產(chǎn)量為多少千件時(shí),該公司在該特許商品的生產(chǎn)中所獲年利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】集合 , ,則A∩RB=(
A.(1,+∞)
B.[0,1]
C.[0,1)
D.[0,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案