(2008•楊浦區(qū)二模)在棱長為2的正方體ABCD-A1B1C1D1中,(如圖)E是棱C1D1的中點,F(xiàn)是側面AA1D1D的中心.
(1)求三棱錐A1-D1EF的體積;
(2)求EF與底面A1B1C1D1所成的角的大。ńY果可用反三角函數(shù)表示)
分析:(1)由已知中棱長為2的正方體ABCD-A1B1C1D1中,E是棱C1D1的中點,F(xiàn)是側面AA1D1D的中心,我們利用等體積法,可得三棱錐A1-D1EF的體積等于三棱錐E-D1A1F的體積,分別求出其底面面積和高,代入棱錐的體積公式,即可得到答案.
(2)取A1D1的中點G,易得FG⊥平面A1B1C1D1,根據(jù)線面夾角的定義可得∠GEF即為EF與底面A1B1C1D1所成的角的平面角,解Rt△GEF即可得到EF與底面A1B1C1D1所成的角的大。
解答:解:(1)VA1-D1EF=VE-A1D1F=
1
3
•1•1=
1
3
.(6分)(體積公式正確3分)
(2)取A1D1的中點G,則FG⊥平面A1B1C1D1,EF在底面A1B1C1D1的射影為GE,所求的角的大小等于∠GEF的大小,(8分)
在Rt△GEF中tan∠GEF=
2
2
,所以EF與底面A1B1C1D1所成的角的大小是arctan
2
2
.(12分)
點評:本題考查的知識點是棱錐的體積,直線與平面所成的角,其中(1)的關鍵是利用等體積法,將求三棱錐A1-D1EF的體積轉化為求三棱錐E-D1A1F的體積,降低運算的難度,(2)的關鍵是確定出∠GEF即為EF與底面A1B1C1D1所成的角的平面角.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2008•楊浦區(qū)二模)若集合A={x|x2-2x-3≤0},B={x|x>a},且A∩B=φ,則實數(shù)a的取值范圍是
[3,+∞)
[3,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•楊浦區(qū)二模)(文)在平面直角坐標系xoy中,若在曲線C1的方程F(x,y)=0中,以(λx,λy)(λ為正實數(shù))代替(x,y)得到曲線C2的方程F(λx,λy)=0,則稱曲線C1、C2關于原點“伸縮”,變換(x,y)→(λx,λy)稱為“伸縮變換”,λ稱為伸縮比.
(1)已知曲線C1的方程為
x2
9
-
y2
4
=1
,伸縮比λ=2,求C1關于原點“伸縮變換”后所得曲線C2的方程;

(2)已知拋物線C1:y2=2x,經(jīng)過伸縮變換后得拋物線C2:y2=32x,求伸縮比λ.
(3)射線l的方程y=
2
2
x(x≥0)
,如果橢圓C1
x2
16
+
y2
4
=1
經(jīng)“伸縮變換”后得到橢圓C2,若射線l與橢圓C1、C2分別交于兩點A、B,且|AB|=
2
,求橢圓C2的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•楊浦區(qū)二模)若函數(shù)f(x)=
x
x+2
的反函數(shù)是y=f-1(x),則f-1(
1
2
)
=
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•楊浦區(qū)二模)在極坐標系中,曲線ρ=4sin(θ-
π
3
)
關于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•楊浦區(qū)二模)若z1=1+i,z1
.
z2
=2
,則z2=
1+i
1+i

查看答案和解析>>

同步練習冊答案