給定下列命題

①半徑為2,圓心角的弧度數(shù)為的扇形的面積為;   

②若a、為銳角,,則

③若A、B是△ABC的兩個(gè)內(nèi)角,且sinA<sinB,則BC<AC;

④若a、b、c分別是△ABC的三個(gè)內(nèi)角A、B、C所對(duì)邊的長(zhǎng),且<0

則△ABC一定是鈍角三角形.

其中真命題的序號(hào)是               

 

【答案】

234

【解析】根據(jù)圓心角的定義和扇形的面積公式而控制,嗎,命題1錯(cuò)誤,名題中,滿足兩角和差的正切公式成立,命題3中,利用正弦定理可知成立,命題4中,由余弦定理可知成立。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給定下列命題:
①半徑為2,圓心角的弧度數(shù)為
1
2
的扇形的面積為
1
2
;
②若a、β為銳角,tan(α+β)=
1
3
,tanβ=
1
2
α+2β=
π
4

③若A、B是△ABC的兩個(gè)內(nèi)角,且sinA<sinB,則BC<AC;
④若a、b、c分別是△ABC的三個(gè)內(nèi)角A、B、C所對(duì)邊的長(zhǎng),且a2+b2-c2<0,則△ABC一定是鈍角三角形.
其中真命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給定下列命題
①半徑為2,圓心角的弧度數(shù)為
1
2
的扇形的面積為
1
2
;
②若a、β為銳角,tan(α+β)=
1
3
,tanβ=
1
2
,則α+2β=
π
4
;
③若A、B是△ABC的兩個(gè)內(nèi)角,且sinA<sinB,則BC<AC;
④若a、b、c分別是△ABC的三個(gè)內(nèi)角A、B、C所對(duì)邊的長(zhǎng),且a2+b2-c2<0,則△ABC一定是鈍角三角形.
其中正確命題的個(gè)數(shù)有(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆安徽省高二上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:填空題

給定下列命題:

①半徑為2,圓心角的弧度數(shù)為的扇形的面積為;

②若、為銳角,,,則

③若、是△的兩個(gè)內(nèi)角,且,則;

④若分別是△的三個(gè)內(nèi)角所對(duì)邊的長(zhǎng),,則△一定是鈍角三角形.

其中真命題的序號(hào)是           

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆遼寧省沈陽鐵路實(shí)驗(yàn)中學(xué)高三第一次月考文科數(shù)學(xué)試卷(帶解析) 題型:填空題

給定下列命題
①半徑為2,圓心角的弧度數(shù)為的扇形的面積為;   
②若a、為銳角,,則;
③若A、B是△ABC的兩個(gè)內(nèi)角,且sinA<sinB,則BC<AC;
④若a、b、c分別是△ABC的三個(gè)內(nèi)角A、B、C所對(duì)邊的長(zhǎng),且<0
則△ABC一定是鈍角三角形.
其中真命題的序號(hào)是               

查看答案和解析>>

同步練習(xí)冊(cè)答案