【題目】已知函數(shù)

1)若函數(shù)x=1時取得極值,求實數(shù)a的值;

2)當0a1時,求零點的個數(shù).

【答案】11;(2)兩個

【解析】

(1) 函數(shù)x=1時取得極值,得,解得,時,,求單調(diào)區(qū)間,驗證x=1時取得極值 (2),由,得減區(qū)間為,增區(qū)間為,其極小值為,,函數(shù)上有且僅有一個零點,根據(jù),,

,得,又因為,所以,所以當時,,根據(jù)零點存在定理,函數(shù)上有且僅有一個零點.

解:(1)定義域為,

由已知,得,解得

時,,

所以

所以減區(qū)間為,增區(qū)間為,

所以函數(shù)時取得極小值,其極小值為,符合題意,所以

(2),由,得

所以,,

所以減區(qū)間為,增區(qū)間為,

所以函數(shù)時取得極小值,其極小值為,

因為,所以,,

所以,所以,

因為,

根據(jù)零點存在定理,函數(shù)上有且僅有一個零點,

因為,

,得,又因為,所以,

所以當時,,

根據(jù)零點存在定理,函數(shù)上有且僅有一個零點,

所以,當時,有兩個零點.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓過點,且其離心率為,過坐標原點作兩條互相垂直的射線與橢圓分別相交于,兩點.

1)求橢圓的方程;

2)是否存在圓心在原點的定圓與直線總相切?若存在,求定圓的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知直線為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)求曲線的直角坐標方程;

(2)設點的直角坐標為,直線與曲線的交點為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018年全國數(shù)學奧賽試行改革:在高二一年中舉行5次全區(qū)競賽,學生如果其中2次成績達全區(qū)前20名即可進入省隊培訓,不用參加其余的競賽,而每個學生最多也只能參加5次競賽.規(guī)定:若前4次競賽成績都沒有達全區(qū)前20名,則第5次不能參加競賽.假設某學生每次成績達全區(qū)前20名的概率都是,每次競賽成績達全區(qū)前20名與否互相獨立.

(1)求該學生進入省隊的概率.

(2)如果該學生進入省隊或參加完5次競賽就結束,記該學生參加競賽的次數(shù)為,求的分布列及的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將圓上每一點的橫坐標保持不變,縱坐標變?yōu)樵瓉淼?/span>,得曲線

1)求出的參數(shù)方程;

2)以坐標原點為極點,軸正半軸為極軸建立極坐標系,設是曲線上的一個動點,求點到直線距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】三角形面積為,,,為三角形三邊長,為三角形內(nèi)切圓半徑,利用類比推理,可以得出四面體的體積為( )

A.

B.

C. 為四面體的高)

D. (其中,,分別為四面體四個面的面積,為四面體內(nèi)切球的半徑,設四面體的內(nèi)切球的球心為,則球心到四個面的距離都是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高三年級學生會主席團有共有名同學組成,其中有名同學來自同一班級,另外兩名同學來自另兩個不同班級.現(xiàn)從中隨機選出兩名同學參加會議,則兩名選出的同學來自不同班級的概率為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線和⊙ ,過拋線上一點 作兩條直線與⊙相切于A、B兩點,分別交拋物線于E、F兩點,圓心點到拋物線準線的距離為

(Ⅰ)求拋物線的方程;

(Ⅱ)當 的角平分線垂直x軸時,求直線EF的斜率;

(Ⅲ)若直線AB在軸上的截距為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是正整數(shù).在一個十進制位數(shù)的各位數(shù)字中,若含有數(shù)字8,則在每個數(shù)字8的前一位數(shù)字就不能是數(shù)字3(即不能出現(xiàn)38字樣).試求出所有這樣的位數(shù)的個數(shù).

查看答案和解析>>

同步練習冊答案