【題目】在極坐標(biāo)系中,曲線的極坐標(biāo)方程為,直線的極坐標(biāo)方程為,設(shè)交于、兩點(diǎn),中點(diǎn)為,的垂直平分線交、.為坐標(biāo)原點(diǎn),極軸為軸的正半軸建立直角坐標(biāo)系.

1)求的直角坐標(biāo)方程與點(diǎn)的直角坐標(biāo);

2)求證:.

【答案】1,;(2)見解析.

【解析】

1)將曲線的極坐標(biāo)方程變形為,再由可將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,將直線的方程與曲線的方程聯(lián)立,求出點(diǎn)的坐標(biāo),即可得出線段的中點(diǎn)的坐標(biāo);

2)求得,寫出直線的參數(shù)方程,將直線的參數(shù)方程與曲線的普通方程聯(lián)立,利用韋達(dá)定理求得的值,進(jìn)而可得出結(jié)論.

1)曲線的極坐標(biāo)方程可化為,即

代入曲線的方程得,

所以,曲線的直角坐標(biāo)方程為.

將直線的極坐標(biāo)方程化為普通方程得,

聯(lián)立,得,則點(diǎn)、,

因此,線段的中點(diǎn)為;

2)由(1)得,

易知的垂直平分線的參數(shù)方程為為參數(shù)),

代入的普通方程得,

因此,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)當(dāng)時,求的單調(diào)區(qū)間;

(2)若有兩個零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年末,武漢出現(xiàn)新型冠狀病毒(肺炎疫情,并快速席卷我國其他地區(qū),傳播速度很快.因這種病毒是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株,目前沒有特異治療方法.防控難度很大.武漢市出現(xiàn)疫情最早,感染人員最多,防控壓力最大,武漢市從27日起舉全市之力入戶上門排查確診的新冠肺炎患者、疑似的新冠肺炎患者、無法明確排除新冠肺炎的發(fā)熱患者和確診患者的密切接觸者等“四類”人員,強(qiáng)化網(wǎng)格化管理,不落一戶、不漏一人.在排查期間,某社區(qū)將本社區(qū)的排查工作人員分為,兩個小組,排查工作期間社區(qū)隨機(jī)抽取了100戶已排查戶,進(jìn)行了對排查工作態(tài)度是否滿意的電話調(diào)查,根據(jù)調(diào)查結(jié)果統(tǒng)計(jì)后,得到如下的列聯(lián)表.

是否滿意

組別

不滿意

滿意

合計(jì)

16

34

50

2

45

50

合計(jì)

21

79

100

1)分別估計(jì)社區(qū)居民對組、組兩個排查組的工作態(tài)度滿意的概率;

2)根據(jù)列聯(lián)表的數(shù)據(jù),能否有的把握認(rèn)為“對社區(qū)排查工作態(tài)度滿意”與“排查工作組別”有關(guān)?

附表:

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種產(chǎn)品的廣告費(fèi)支出x(單位:百萬元)與銷售額y(單位:百萬元)之間有如下的對應(yīng)數(shù)據(jù):

x

2

4

5

6

8

y

30

40

60

50

70

1)畫出散點(diǎn)圖;

2)求y關(guān)于x的線性回歸方程.

3)如果廣告費(fèi)支出為一千萬元,預(yù)測銷售額大約為多少百萬元?

參考公式用最小二乘法求線性回歸方程系數(shù)公式:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人做下面的游戲:有一個由兩個同軸圓柱組成的有蓋容器,如圖,里面的實(shí)心圓柱底面半徑為,外面的圓柱面的底面半徑為,容器的高為。在容器內(nèi)放入個半徑為且質(zhì)地相同的小球,其中紅、黃、藍(lán)色各個,隨意翻動容器,然后將容器直立在桌面上。當(dāng)小球全部停止后,如果有兩個顏色相同的小球相鄰,則甲勝,否則乙勝。那么,甲勝的概率為()。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知甲、乙兩名工人在同樣條件下每天各生產(chǎn)100件產(chǎn)品,且每生產(chǎn)1件正品可獲利20元,生產(chǎn)1件次品損失30元,甲、乙兩名工人100天中出現(xiàn)次品件數(shù)的情況如表所示.

甲每天生產(chǎn)的次品數(shù)/件

0

1

2

3

4

對應(yīng)的天數(shù)/天

40

20

20

10

10

乙每天生產(chǎn)的次品數(shù)/件

0

1

2

3

對應(yīng)的天數(shù)/天

30

25

25

20

(1)將甲每天生產(chǎn)的次品數(shù)記為(單位:件),日利潤記為(單位:元),寫出的函數(shù)關(guān)系式;

(2)按這100天統(tǒng)計(jì)的數(shù)據(jù),分別求甲、乙兩名工人的平均日利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】漢字聽寫大會不斷創(chuàng)收視新高,為了避免“書寫危機(jī)”,弘揚(yáng)傳統(tǒng)文化,某市大約10萬名市民進(jìn)行了漢字聽寫測試現(xiàn)從某社區(qū)居民中隨機(jī)抽取50名市民的聽寫測試情況,發(fā)現(xiàn)被測試市民正確書寫漢字的個數(shù)全部在160到184之間,將測試結(jié)果按如下方式分成六組:第1組,第2組,,第6組,如圖是按上述分組方法得到的頻率分布直方圖.

若電視臺記者要從抽取的市民中選1人進(jìn)行采訪,求被采訪人恰好在第2組或第6組的概率;

試估計(jì)該市市民正確書寫漢字的個數(shù)的平均數(shù)與中位數(shù);

已知第4組市民中有3名男性,組織方要從第4組中隨機(jī)抽取2名市民組成弘揚(yáng)傳統(tǒng)文化宣傳隊(duì),求至少有1名女性市民的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),曲線在原點(diǎn)處的切線相同。

(1)求的值;

(2)求的單調(diào)區(qū)間和極值;

(3)若時,,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】5名男生和4名女生中選出4人去參加座談會,問:

1)如果4人中男生和女生各選2人,有多少種選法?

2)如果男生中的甲與女生中的乙至少要有1人在內(nèi),有多少種選法?

查看答案和解析>>

同步練習(xí)冊答案