分析 通過(guò)an=$\sqrt{{{a}_{n-1}}^{2}+4}$(n≥2)可知${{a}_{n+1}}^{2}$=${{a}_{n}}^{2}$+4,進(jìn)而可知數(shù)列{${{a}_{n}}^{2}$}是以首項(xiàng)、公差均為4的等差數(shù)列,計(jì)算即得結(jié)論.
解答 解:依題意,an>0,
∵an=$\sqrt{{{a}_{n-1}}^{2}+4}$(n≥2),
∴${{a}_{n+1}}^{2}$=${{a}_{n}}^{2}$+4,
又∵${{a}_{1}}^{2}$=4,
∴數(shù)列{${{a}_{n}}^{2}$}是以首項(xiàng)、公差均為4的等差數(shù)列,
∴${{a}_{n}}^{2}$=4n,
∴an=2$\sqrt{n}$.
點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng),注意解題方法的積累,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,0) | B. | (-∞,ln$\frac{3}{5}$) | C. | (ln$\frac{3}{5}$,0) | D. | (-∞,-1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a∈R | B. | a=$\frac{1}{2}$ | C. | a>$\frac{1}{2}$ | D. | a≤$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com