如圖,在四棱錐P-ABCD中,PA丄平面ABCD,,AD=AB=1,AC和BD交于O點.
(I)求證:平面PBD丄平面PAC.
(II)當點A在平面PBD內的射影G恰好是ΔPBD的重心時,求二面角B-PD-A的余弦值.

(Ⅰ)見解析;(II) .

解析試題分析:(Ⅰ)利用條件證明,,即可證平面平面;(II)過的垂線為軸,軸,軸,建立空間坐標系,得各點坐標,設,利用,先求出的值,再分別求面和面的法向量,從而可得結論.
試題解析:(Ⅰ)依題意,,,所以, 2分
,又,∴,又,
∴平面平面.    4分
(Ⅱ)
的垂線為軸,軸,軸,建立如圖所示坐標系,則,,設,所以,

,得
解得,.      6分
∴P點的坐標為
的一個法向量為,     8分
設面的一個法向量為,
,∴ ,      10分
,
所以二面角的余弦值為.     12分
考點:1、面面垂直的判定定理;2、利用空間向量求二面角.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

四棱錐中,底面為平行四邊形,側面底面.已知,,

(Ⅰ)證明;
(Ⅱ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在直三棱柱(即側棱與底面垂直的三棱柱)中,

(I)若的中點,求證:平面平面;
(II)若為線段上一點,且二面角的大小為,試確定的位置.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在長方體中,,,是線段的中點.
(Ⅰ)求證:平面;
(Ⅱ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在中,,上的高,沿折起,使.
(Ⅰ)證明:平面⊥平面
(Ⅱ)若,求三棱錐的表面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖1,在直角梯形中,,,,
. 把沿對角線折起到的位置,如圖2所示,使得點在平面上的正投影恰好落在線段上,連接,點分別為線段的中點.
(I)求證:平面平面;
(II)求直線與平面所成角的正弦值;
(III)在棱上是否存在一點,使得到點四點的距離相等?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在長方體中,已知上下兩底面為正方形,且邊長均為1;側棱,中點,中點,上一個動點.

(Ⅰ)確定點的位置,使得
(Ⅱ)當時,求二面角的平面角余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四邊形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=4,AB=3,點E、F分別在BC、AD上,EF∥AB.現(xiàn)將四邊形ABEF沿EF折起,使平面ABEF平面EFDC,設AD中點為P.
(Ⅰ)當E為BC中點時,求證:CP∥平面ABEF;
(Ⅱ)設BE=x,當x為何值時,三棱錐A-CDF的體積有最大值?并求出這個最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四棱錐中,都是邊長為的等邊三角形.

(I)證明:
(II)求點A到平面PCD的距離.

查看答案和解析>>

同步練習冊答案