【題目】在一次數(shù)學(xué)考試中,從甲,乙兩個班級各抽取10名同學(xué)的成績進(jìn)行統(tǒng)計分析,他們成績的莖葉圖如圖所示,成績不小于90分為及格.

1)從兩班10名同學(xué)中各抽取一人,在有人及格的情況下,求乙班同學(xué)不及格的概率;

2)從甲班10人中取一人,乙班10人中取兩人,三人中及格人數(shù)記為,求的分布列和數(shù)學(xué)期望.

【答案】1;(2)分布列見解析,.

【解析】

1)從莖葉圖知甲班有4人及格,乙班有5人及格.事件從兩班10名同學(xué)中各抽取一人,有人及格記作,事件從兩班10名同學(xué)中各抽取一人,乙班同學(xué)不及格記作,求出可由條件概率公式可得結(jié)論;

(2)的取值為0,12,3,分別計算概率得概率分布列,再由公式計算期望.

解:(1)甲班有4人及格,乙班有5人及格.

事件從兩班10名同學(xué)中各抽取一人,有人及格記作,

事件從兩班10名同學(xué)中各抽取一人,乙班同學(xué)不及格記作,

2的取值為01,23,

;

;

所以的分布列為

0

1

2

3

所以

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知一個正四面體和一個正四棱錐,它們的各條棱長均相等,則下列說法:

①它們的高相等;②它們的內(nèi)切球半徑相等;③它們的側(cè)棱與底面所成的線面角的大小相等;④若正四面體的體積為,正四棱錐的體積為,則;⑤它們能拼成一個斜三棱柱.其中正確的個數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,角AB,C的對邊分別為ab,c

1)若還同時滿足下列四個條件中的三個:①,②,③,④的面積,請指出這三個條件,并說明理由;

2)若,求周長L的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次運動會上,某單位派出了由6名主力隊員和5名替補(bǔ)隊員組成的代表隊參加比賽.

1)如果隨機(jī)抽派5名隊員上場比賽,將主力隊員參加比賽的人數(shù)記為,求隨機(jī)變量的數(shù)學(xué)期望;

2)若主力隊員中有2名隊員在練習(xí)比賽中受輕傷,不宜同時上場;替補(bǔ)隊員中有2名隊員身材相對矮小,也不宜同時上場,那么為了場上參加比賽的5名隊員中至少有3名主力隊員,教練員有多少種組隊方案?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,其中為常數(shù),函數(shù)的圖象在它們與坐標(biāo)軸交點處的切線互相平行.

1)求的值;

2)若存在,使不等式成立,求實數(shù)的取值范圍;

3)令,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為培養(yǎng)學(xué)生對傳統(tǒng)文化的興趣,某校從理科甲班抽取60人,從文科乙班抽取50人參加傳統(tǒng)文化知識競賽.

1)根據(jù)題目條件完成下邊列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為學(xué)生的傳統(tǒng)文化知識競賽成績優(yōu)秀與文理分科有關(guān).

優(yōu)秀人數(shù)

非優(yōu)秀人數(shù)

總計

甲班

乙班

20

總計

60

2)現(xiàn)已知,,三人獲得優(yōu)秀的概率分別為,,設(shè)隨機(jī)變量表示,,三人中獲得優(yōu)秀的人數(shù),求的分布列及期望

附:,

0.100

0.050

0.025

0.010

0.005

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)研究函數(shù)的極值點;

(2)當(dāng)時,若對任意的,恒有,求的取值范圍;

(3)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)開展勞動實習(xí),學(xué)生加工制作零件,零件的截面如圖所示.O為圓孔及輪廓圓弧AB所在圓的圓心,A是圓弧AB與直線AG的切點,B是圓弧AB與直線BC的切點,四邊形DEFG為矩形,BCDG,垂足為C,tanODC=,EF=12 cmDE=2 cm,A到直線DEEF的距離均為7 cm,圓孔半徑為1 cm,則圖中陰影部分的面積為________cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足,.

1)若,且,求的通項公式;

2)設(shè)的第項是最大項,即,求證:的第項是最大項;

3)設(shè),求的取值范圍,使得有最大值與最小值,且.

查看答案和解析>>

同步練習(xí)冊答案