已知雙曲線與拋物線有一個(gè)公共的焦點(diǎn),且雙曲線上的點(diǎn)到坐標(biāo)原點(diǎn)的最短距離為1,則該雙曲線的標(biāo)準(zhǔn)方程是___________。

試題分析:利用拋物線的焦點(diǎn)坐標(biāo)確定,雙曲線中c的值,利用雙曲線上的點(diǎn)到坐標(biāo)原點(diǎn)的最短距離為1,確定a的值,從而可求雙曲線的標(biāo)準(zhǔn)方程。解:拋物線y2=8x得出其焦點(diǎn)坐標(biāo)(2,0),故雙曲線的c=2,
∵雙曲線上的點(diǎn)到坐標(biāo)原點(diǎn)的最短距離為1,∴a=1,∴b2=c2-a2=3,∴雙曲線的標(biāo)準(zhǔn)方程是故答案為:
點(diǎn)評(píng):本題考查拋物線的標(biāo)準(zhǔn)方程與性質(zhì),考查雙曲線的標(biāo)準(zhǔn)方程,確定幾何量是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知經(jīng)過(guò)點(diǎn)A(-4,0)的動(dòng)直線l與拋物線G:相交于B、C,當(dāng)直線l的斜率是時(shí),
(Ⅰ)求拋物線G的方程;
(Ⅱ)設(shè)線段BC的垂直平分線在y軸上的截距為b,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線的焦點(diǎn)以及橢圓的上、下焦點(diǎn)及左、右頂點(diǎn)均在圓上.
(1)求拋物線和橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)的直線交拋物線兩不同點(diǎn),交軸于點(diǎn),已知,求的值;
(3)直線交橢圓兩不同點(diǎn),軸的射影分別為,若點(diǎn)滿足,證明:點(diǎn)在橢圓上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知拋物線的焦點(diǎn)與雙曲線的右焦點(diǎn)重合,拋物線的準(zhǔn)線與軸的交點(diǎn)為,點(diǎn)在拋物線上且,則△的面積為       .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知拋物線C:與點(diǎn)M(-2,2),過(guò)C的焦點(diǎn)且斜率為k的直線與C交于A,B兩點(diǎn),若,則k=(  )
A.B.C.D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

拋物線C:過(guò)點(diǎn)(4,2),則拋物線C的焦點(diǎn)坐標(biāo)為      .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,拋物線形拱橋的頂點(diǎn)距水面4米時(shí),測(cè)得拱橋內(nèi)水面寬為16米;當(dāng)水面升高3米后,拱橋內(nèi)水面的寬度為          _________米.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

拋物線的焦點(diǎn)是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

拋物線上一點(diǎn)的橫坐標(biāo)為4,則點(diǎn)與拋物線焦點(diǎn)的距離為
A.2B.3C.4D.5

查看答案和解析>>

同步練習(xí)冊(cè)答案