13.求下列各式的值.
(1)(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}$-0.30-16${\;}^{-\frac{3}{4}}$; 
 (2)4${\;}^{lo{g}_{4}5}$-lne5+lg500+lg2.

分析 (1)根據(jù)指數(shù)冪的運算性質(zhì)計算即可,
(2)根據(jù)對數(shù)的運算性質(zhì)計算即可.

解答 解:(1)原式=$(\frac{3}{2})^{2×\frac{1}{2}}$-1-${2}^{4×(-\frac{3}{4})}$=$\frac{3}{2}$-1-$\frac{1}{8}$=$\frac{3}{8}$,
(2)原式=5-5+lg1000=3.

點評 本題考查了指數(shù)冪的和對數(shù)的運算性質(zhì),屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

3.有下列四個命題:
①已知A,B,C,D是空間任意四點,則$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{CD}$+$\overrightarrow{DA}$=0;
②若兩個非零向量$\overrightarrow{AB}$與$\overrightarrow{CD}$滿足$\overrightarrow{AB}$+$\overrightarrow{CD}$=$\overrightarrow{0}$,則$\overrightarrow{AB}$‖$\overrightarrow{CD}$;
③分別表示空間向量的有向線段所在的直線是異面直線,則這兩個向量不是共面向量;
④對于空間的任意一點O和不共線的三點A,B,C,若$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$(x,y,z∈R),則P,A,B,C四點共面.
其中正確命題有②④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知集合A={x|x2+3x-10<0},B={x|x2-2x-3≥0},全集為R,求A∩B和A∪(∁RB)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.對甲、乙兩名自行車賽手在相同條件下進行了6次測試,測得他們的最大速度(m/s)的數(shù)據(jù)如表.
273830373531
33  2938342836
(1)畫出莖葉圖
(2)判斷選誰參加比賽更合適.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.函數(shù)f(x)=lg(-x2+2x)的單調(diào)遞減區(qū)間是[1,2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.如圖給出的是計算$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+$\frac{1}{8}$+…+$\frac{1}{100}$的值的一個程序框圖,其中判斷框內(nèi)應填入的條件是i<51或(i<=50)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知平面α∩平面β=直線l,點A,C∈α,點B,D∈β,且A,B,C,D∉l,點M,N分別是線段AB,CD的中點.( 。
A.當|CD|=2|AB|時,M,N不可能重合
B.M,N可能重合,但此時直線AC與l不可能相交
C.當直線AB,CD相交,且AC∥l時,BD可與l相交
D.當直線AB,CD異面時,MN可能與l平行

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.若實數(shù)x,y滿足$\left\{\begin{array}{l}{y≤1}\\{x+y≥0}\\{x-y-2≤0}\end{array}\right.$,且M(x,-2),N(1,y),則$\overrightarrow{OM}$•$\overrightarrow{ON}$的最大值等于( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.如圖,一個多面體的正視圖和側視圖是兩個全等的等腰直角三角形且直角邊長為2,俯視圖是邊長為2的正方形,則該多面體的最大面的面積是( 。
A.2B.$4\sqrt{2}$C.$2\sqrt{2}$D.$2\sqrt{3}$

查看答案和解析>>

同步練習冊答案